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SUMMARY 

An intimate association between two species is known as a symbiosis. A symbiotic 

relationship where both partners benefit is defined as a mutualism. This is in contrast 

with parasitism, where one partner benefits at the expense of another partner. 

Commensalism is a third type of symbiotic association and is characterized by one 

partner that takes advantage of the association and the other is unaffected. These 

different types of symbioses are widespread in social insects. The largest diversity of 

social insect symbionts evolved in the group of myrmecophiles, which are arthropods 

that live inside or in close vicinity of ant nests. Up till now, studies on myrmecophiles 

focus typically on the association between a host and a single symbiont. In this thesis, 

ant nests were considered as microcosms with multiple myrmecophiles living together 

in the same ant nest. We were interested in the biotic and abiotic interactions that affect 

the symbiotic community as a whole, rather than focusing on single species 

interactions. In addition, our current knowledge on the symbiosis of arthropods with 

ants is typically based on very specialized species. Here, we focus on relatively 

unspecialized myrmecophiles, which probably outnumber the group of specialized 

species. Our main model system was the myrmecophile microcosm in the nests of red 

wood ants (Formica rufa group). Our second model system was an association of co-

inhabiting (= parabiosis) African ant species that also houses a community of 

myrmecophile species.  

In chapter 1, we reviewed the diverse group of myrmecophiles that can be found in 

association with red wood ants (RWAs). In total, 125 species were listed and the 

biology of the different arthropod groups were discussed. This chapter serves as an 

introduction to the later chapters. 

The main part of this thesis deals with biotic interactions in ant nests, but we examined 

first in chapter 2  the effect of abiotic interactions on myrmecophile communities. In 

accordance with metapopulation theory, myrmecophile species richness per unit 

volume was negatively correlated with increasing nest mound isolation. We did not find 

support that the abiotic variables mound moisture, pH, mound size and site size affect 

the myrmecophile community or its species richness.  

To understand the dynamics of a community in nature, it is essential to have an idea 

of its trophic interactions. In chapter 4 , a surprising complex food web was found In 

the RWA microcosm, with most myrmecophiles parasitizing on ant brood and ant prey. 

In addition, multiple trophic predator-prey links among the myrmecophiles were 

encountered. The results of the stable isotope analyses complemented the findings of 
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direct feeding tests and indicated the existence of multiple trophic levels. The presence 

of large numbers of parasitic myrmecophiles can impose large costs on RWAs. 

However, RWAs could indirectly benefit from the intraguild predation of brood parasitic 

myrmecophiles. In chapter 3, another mechanism that might counter the high parasitic 

pressure was shown. In general, large foragers in insect colonies specialize in nest 

defending against large, extranidal threats. However, we demonstrated that small 

nurses in RWA colonies are the most aggressive and most efficient defenders of brood 

against small, intranidal, parasitic myrmecophiles. This group of workers is best suited 

to defend the brood against these parasites due to their better matching size, high 

encounter rate in the nest and the high task switching costs that would occur if foragers 

had to carry out this task.  

The RWA myrmecophiles showed a different level of integration, with some species 

preferring the dense brood chambers, whereas others avoided the brood chambers 

and lived at the edge of the nest (chapter 5 ). This level of integration was not correlated 

with the aggression they provoked in their RWA host or their brood predation tendency.  

Up till now, it is believed that social insect symbionts mainly employ chemical deception 

by either mimicking the host’s cuticular chemical profile (mimicry or camouflage) or 

being chemical insignificant to sneak into social insect nests. However, in the 

community of RWA myrmecophiles tested in chapter 6, most species had distinct 

chemical profiles. Some of them carried low concentrations of compounds, but a 

significant part showed no disguise at all. These results shed new light on the evolution 

of integration mechanisms in social insect symbionts, and stresses that unspecialized 

species can integrate in social insect nests by using simple strategies such as hiding, 

swift movements or emitting defensive chemicals rather than using chemical 

deception. 

Many RWA myrmecophiles are persecuted, but in chapter 7 we reported that survival 

of three obligate myrmecophilous beetles over a period of 20 days was not different 

from a control set-up without ants. However, reduced survival was detected for a 

facultative myrmecophile in presence of RWAs. Survival analyses in the presence of 9 

different ant species showed that the three beetles survived better in presence of 

larger-bodied ant species, and was highest in presence of its preferred host F. rufa, 

which also has relatively large workers. These results suggests, that in spite of their 

unspecialized nature, these beetles are optimally adapted to their preferred host and 

the importance of size asymmetries in host-symbiont interactions. 

Finally, the interactions in the parabiotic nests of the large Platythyrea conradti and tiny 

Strumigenys maynei ants were described in chapter 8 . The chemical profile of the 
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parabiotic partners was very different. The parabiotic association tended to be 

mutualistic as P. conradti benefits from the supreme defence capabilities of S. maynei 

against alien ants and intranidal myrmecophiles. The latter, in turn, benefits from the 

prey that thrive in the organic material carried to the nest by P. conradti. 
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SAMENVATTING  

Een hechte associatie tussen twee soorten is gekend als een symbiose. Een symbiose 

waar beide partners voordeel uit halen is een mutualisme. Dit is in tegenstelling met 

parasitisme, waar één partner profiteert van een andere partner. Het derde type van 

symbiose is commensalisme, waarbij één partner voordeel haalt uit de associatie, 

maar geen effecten heeft op de andere. Deze drie types zijn wijdverspreid in 

symbionten van sociale insecten. De grootste diversiteit van deze symbionten vindt 

men in de groep van de myrmecofielen. Dit zijn symbiotische arthropoden 

(geleedpotigen) die in of in de nabijheid van mierennesten leven. Myrmecofielen 

werden tot nu toe vooral apart onderzocht. In deze thesis echter, wordt een mierennest 

beschouwd als een microkosmos waar gastheer en verschillende myrmecofielen 

interageren. We zijn geïnteresseerd in de biotische en abiotische interacties die de 

myrmecofiele gemeenschap in zijn geheel beïnvloeden. Onze huidige kennis is 

daarnaast voornamelijk gebaseerd op studies met erg gespecialiseerde 

myrmecofielen. Hier echter, richten we ons op relatief ongespecialiseerde soorten, die 

waarschijnlijk veel abundanter zijn dan de gespecialiseerde myrmecofielen. Ons 

belangrijkste modelsysteem is de myrmecofiele gemeenschap die leeft in rode bosmier 

(Formica rufa groep) nesten. Het tweede modelsysteem is de parabiotische (= 

vredevol samenlevend) associatie van twee Afrikaanse mieren waarmee ook een 

myrmecofiele gemeenschap was geassocieerd. 

We beginnen deze thesis met het samenvatten van de diverse groep van 

myrmecofielen geassocieerd met rode bosmieren (hoofdstuk 1) . We lijsten in totaal 

125 geassocieerde soorten op, en bespreken de levenswijze van de verschillende 

groepen arthropoden. Dit hoofdstuk dient als inleiding op het experimentele deel van 

de thesis. 

Deze thesis handelt grotendeels over biotische interacties in mierennesten, maar eerst 

onderzoeken we in hoofdstuk 2  het effect van abiotische op myrmecofiele 

gemeenschappen. We vinden in overeenstemming met de metapopulatie theorie, dat 

de soortenrijkdom van myrmecofielen afnam met toenemende isolatie van de 

bosmierkoepels. We vinden geen effecten van abiotische variabelen op de 

myrmecofiele gemeenschap soortenrijkdom. 

Om de dynamieken van een gemeenschap te begrijpen, is het essentieel om een idee 

te hebben van de voedselwebrelaties tussen de soorten van die gemeenschap. In 

hoofdstuk 4  tonen we aan dat er een complex voedselweb aanwezig is in rode 

bosmiernesten. De meeste myrmecofielen parasiteren op het broed van de mieren en 
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aten mee van prooien die de mieren verzamelen. Daarnaast zijn er verschillende 

trofische interacties tussen de myrmecofielen onderling. Een analyse van de rode 

bosmiergemeenschap met stabiele isotopen bevestigt het bestaan van meerdere 

trofische niveaus. Het grote aantal parasieten in bosmiernesten kan een serieuze kost 

zijn voor de mieren. Anderzijds kunnen deze indirect voordeel halen van het feit dat de 

parasieten ook andere parasieten opeten. We bespreken in hoofdstuk 3  een ander 

mechanisme dat de hoge druk van de parasieten voor de mieren kan verlichten. Bij 

sociale insecten zijn typisch de grote werksters die buiten foerageren, gespecialiseerd 

in de verdediging van het nest tegen grote bedreigingen. Hier tonen we echter aan dat 

kleine werksters die broed verzorgen agressiever waren naar kleine myrmecofielen 

toe en efficiënter zijn in broedbescherming. Deze groep is beter geschikt om het broed 

in het nest te beschermen tegen parasieten door hun overeenkomende grootte, hogere 

kans om de parasieten te ontmoeten en de hoge kosten die gepaard gaan met het 

wisselen van taak die zouden plaatsvinden als foeragerende werksters deze taak 

zouden moeten uitvoeren.  

Myrmecofielen vertonen een verschillende graad van integratie in bosmiernesten. 

Deze integratiegraad is niet gelinkt met de agressie die ze opwekten of met hun neiging 

om broed te eten (hoofdstuk 5 ). 

Er wordt tot nu toe algemeen aangenomen dat symbionten van sociale insecten hun 

gastheer chemisch moeten misleiden door de gastheergeur te imiteren of door lage 

geurconcentraties te dragen, om te kunnen overleven in hun nesten. De meeste 

soorten van de myrmecofiele gemeenschap bootsen echter de geur van hun gastheer 

niet na (hoofdstuk 6 ). Sommigen hebben wel lage concentraties van geurmoleculen, 

maar het afwijkend chemisch profiel van een significant deel wordt duidelijk herkend 

door de gastheer. Deze resultaten tonen aan dat ongespecialiseerde symbionten ook 

kunnen overleven in nesten van hun gastheer door middel van simpele strategieën 

zoals vluchten en het afweren van de gastheer met chemische stoffen.  

In hoofdstuk 7  vinden we dat de overleving van drie obligate, myrmecofiele kevers 

niet wordt beïnvloed werd door de aanwezigheid van hun agressieve gastheer. De 

overleving van een facultatieve gast is wel lager in aanwezigheid van bosmieren. 

Overleving van de drie kevers bij 9 mierensoorten stijgt met toenemende grootte van 

de mierensoorten en is het grootste bij de relatief grote bosmieren.  

In hoofdstuk 8 onderzoeken we de interacties in het parabiotische nest van de grote 

mierensoort Platythyrea conradti en de kleine mierensoort Strumigenys maynei. De 

geur van de parabiotische partners is erg verschillend. De parabiotische associatie 

heeft mutualistische kenmerken, want nestverdediging tegen myrmecofielen en 
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andere mieren wordt vooral uitgevoerd door de agressieve S. maynei. Deze kan dan 

weer profiteren van de prooien die leven in het nestmateriaal aangebracht door P. 

conradti. 
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SYMBIOSIS 

Symbiosis is the permanent or long-term association between two different species. 

These associations are very common in nature and can be found in and across all 

major groups of life (Lewis 1985, Paracer and Ahmadjian 2000). In general, three types 

of symbiosis can be distinguished depending on the costs and benefits involved for the 

different partners. In mutualisms, both partners benefit from the association. Parasitism 

is defined as a symbiosis where one partner benefits at the expense of the other 

partner. Commensalism is a symbiosis where one partner takes advantage of the 

association, without harming or benefiting the other partner (Lewis 1985, Paracer and 

Ahmadjian 2000). Symbiosis plays a tremendous role in the origin of novelties and 

speciation (Lewis 1985, Smith and Szathmáry 1995). Numerous organisms acquired 

new capabilities and could exploit novel niches through mutualistic partners (Paracer 

and Ahmadjian 2000). For example, complete communities of invertebrates can 

establish around deep sea vents with the help of chemosynthetic bacteria that fix CO2 

in the absence of sun light (Luther et al. 2001). Symbiosis might also be a driver of co-

evolution when the symbiotic partners affect reciprocally each other’s evolution 

(Paracer and Ahmadjian 2000). A well-known example of mutualistic co-evolution are 

the reciprocal adaptations in plants and their pollinators. The co-evolution between 

host and parasite can lead to an evolutionary arms race when host and parasite are 

constantly co-evolving in an aggressive way (Dawkins and Krebs 1979). Selection will 

favour parasites that are highly virulent but at the same time it will favour hosts that are 

more efficient in excluding the parasites (Paracer and Ahmadjian 2000). The 

boundaries between the three types of symbioses are not clear-cut. Therefore the three 

types should be conceptualized as a continuum with mutualism and parasitism as 

extremes rather than as distinct categories (Johnson et al. 1997). The exact position 

that symbionts take along this continuum is often hard to determine. Moreover the 

nature of symbioses is heavily affected by the ecological and environmental context 

(Daskin and Alford 2012). This is clear in the amphibian disease chytridiomycosis, 

which is caused by a parasitic fungus. The susceptibility of amphibians to this disease 

is strongly associated with environmental temperature. The highest amphibian losses 

occur at high elevations and in cooler seasons, because the parasite has a relatively 

cool optimal temperature window. Moreover the interaction between amphibian and 

pathogen is also affected by the prevalence of mutualistic bacteria on the skin of the 

amphibians that secrete metabolites active against the parasite (Daskin and Alford 

2012). Symbioses also differ in the specificity of the association. Symbionts might be 

specific to one organism, but others can associate with many, often related, organisms. 
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In general, symbionts that are highly specialized show higher specificity to their host 

(Paracer and Ahmadjian 2000).  

A special case of symbiosis can be found in some small, natural and delineated micro-

ecosystems or microcosms. Here, we can find complete ecosystems inhabited by 

multiple symbionts that are structured and supported by one host. This host provides 

shelter, food and habitat to multiple symbionts, which are known as inquilines (= lodger, 

tenant) (Srivastava et al. 2004). Typical examples of these inquiline ecosystems are 

aquatic communities in phytotelmata or small water habitats formed naturally by a plant 

(e.g. pitcher plants, tree holes and bromeliads), micro-arthropods in moss patches and 

fauna associated with insect-induced galls (Sanver and Hawkins 2000, Kitching 2001, 

Srivastava et al. 2004). These symbiont communities can be conceptualized as 

metacommunities (sensu Hanski and Gilpin (1991) as symbionts live in spatially 

distinct and stable patches, susceptible to colonization surrounded by a landscape 

matrix unsuitable for colonization. The systems have the advantage of small size, small 

number of symbionts, contained structure and hierarchical and spatial arrangement 

(Srivastava et al. 2004). Moreover there is a strong interaction between symbionts and 

host and among the symbionts themselves. Consequently, these microcosm systems 

have been elaborately used as model systems for testing fundamental questions in 

ecology studying for example spatial ecology dynamics and food web interactions. In 

this thesis, we use as a model system the symbiont communities associated with social 

insects. Social insect nests often support small delineated communities of symbionts 

and can be regarded as inquiline microcosms as well. 

 

SOCIAL INSECT SYMBIONTS 

Organisms ranging from microorganisms such as bacteria, fungi, protozoa and 

nematodes to macro-organisms such as plants, arthropods and birds, established 

symbiotic relationships with social insects (Kistner 1982, Hölldobler and Wilson 1990, 

Schmid-Hempel 2011). The three types of symbiosis are widespread in social insects 

and especially in ants extremely diverse (Fig. I.1). Again, the nature of the symbiont 

lies along a continuum between these types of symbiosis and it can move towards 

another type of symbiosis depending on the abiotic and biotic context (Fig. I.1, Nash 

and Boomsma 2008, Kronauer and Pierce 2011). From all the social insect symbiont 

groups, the largest variety of strategies can be found in the group of arthropods. These 

symbiotic arthropods benefit from the stable conditions, the different food sources and 
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protection against predators (Hölldobler and Wilson 1990, Kronauer and Pierce 2011). 

In the course of evolution, two different groups of arthropods succeeded to integrate 

into social insect nests: other social insects and non-social arthropods. The 

terminology used for the different host-symbiont associations is often ambiguous and 

several overlapping categories have been proposed (Hölldobler and Wilson 1990, 

Buschinger 2009). Moreover the nature of the interaction is for most symbionts poorly 

known, which further complicates the attribution of a symbiont to a single category.  

Symbioses among different social insect species  

Some social insects are completely dependent on other social insects. Wasmann 

distinguished mixed nests from compound nests depending on the relationship 

between symbiont and host (Wasmann 1891). In mixed nests, the brood of both social 

insect species is nursed in the same chamber and there is intense interaction between 

the host and symbiont species. In compound nests, however, brood of host and 

symbiont is kept separated in different chambers and the symbiont raises its own brood 

(Buschinger 2009).  

Compound nests 

These relationships are uniquely found among ant species and encompass 

commensalistic, parasitic and mutualistic interactions. Symbionts are not related with 

their host and might clearly differ in morphology. The most rudimentary association is 

known as plesiobiosis and refers to species that simply nest close to each other, but 

do not interact. When disturbing the nest, brood theft and fighting may occur between 

the two ant species (Hölldobler and Wilson 1990). Some small ant species build nest 

chambers adjacent to the nest of larger ant species. They feed on refuse or rob workers 

that carry food (cleptobiosis) or prey on brood (lestobiosis) of the larger species 

(Buschinger 2009). Xenobiosis denotes a more advanced form of parasitic association 

where the symbiont freely moves among its host in the nest without being attacked and 

regularly obtains food usually by trophallaxis (Hölldobler and Wilson 1990). The best 

known example is Formicoxenus nitidulus which is a tiny ant that lives associated with 

red wood ants (RWAs) (Donisthorpe 1927). They construct inside RWA mounds little 

nests separated from the brood chambers of the host and care for their own brood. 

They often beg for food from their much larger host or steal a food droplet that two host 

workers share during trophallaxis. Finally, some tropical ant species co-inhabit the 

same nest and do not exploit the other partner. It is even reported that both ant partners 

might benefit from the presence of the other species by interspecific trail following, food 

sharing and nest defence of the other partner (Vantaux et al. 2007, Menzel and 
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Blüthgen 2010). This apparent mutualistic association is known as parabiosis. It is 

mainly found in ants that live together in so-called ant gardens (Orivel and Leroy 2010) 

which are microhabitats formed by arboreal ants that collect seeds of epiphytic plants 

and let them germinate in their carton nests.  

Mixed nests 

The symbionts in these nests are obligate parasites and are often referred to as social 

parasites (Buschinger 2009). Temporary social parasites only exploit the host colony 

during the founding phase of the parasitic colony. The queen of these parasites 

invades a host colony where she replaces the host queen. Her eggs and larvae are 

nursed by workers of the host. A parasitic workforce develops and gradually replaces 

the host workforce which is no longer replenished. Temporary social parasitism occurs 

in several groups of ants and is well known in RWAs. Independent colony founding 

occurs in this group by queens that take over colonies of the Formica subgenus 

Serviformica (Seifert 2007). Permanent social parasites fulfil their entire life cycle 

inside the colony of a closely related species (Emery’s rule). The parasite shares many 

morphological features with its host, but lost features related to nesting and foraging. 

This permanent parasitism (also confusingly referred to as inquilinism) is usually 

characterized by the loss of the worker caste. After usurping the host colony, host 

workers raise directly sexuals of the parasite. These advanced parasites can be found 

in bumblebees (Bombus subgenus Psithyrus), ants (e.g. Anergates, Teleutomyrmex), 

wasps (e.g. Vespula austriaca) and possibly in termites (Termes insitivus) (Schmid-

Hempel 1998). 

Non-social arthropods 

A remarkable legion of arthropods switched in a large number of groups from a free-

living state to a strict association with social insects (Kistner 1982, Hölldobler and 

Wilson 1990, Rettenmeyer et al. 2010). Thousands of species, representing at least 

17 orders, 120 families and hundreds of genera formed a strict relationship with social 

insects (Wilson 1971). There are rough estimates that more than 10000 arthropods 

are living with ants, which approximates the total number of ant species described 

(Hölldobler and Wilson 1990). Depending on the targeted host, these arthropods are 

called myrmecophiles (host: ants), termitophiles (host: termites), melittophiles (host: 

social bees) or sphecophiles (host: social wasps). Particularly mites (Acari) and rove 

beetles (Staphylinidae) are preadapted to a life in association with social insects and 

are the dominant groups among social insect symbionts (Wilson 1971). Most of the 

symbionts live permanently within the nest of their host and are hence true (non-social) 
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inquilines. However, some arthropods that live outside the nest, are also strictly 

associated with a social insect host. For example, the ladybird Coccinella magnifica is 

only found on plants near RWAs, as it preys on aphid colonies tended by this ant 

(Sloggett et al. 1998). In analogy to island biogeography, the largest diversity of 

arthropod symbionts can be found in species with large colonies, at least in ants, 

whereas small colonies often have no associates. These colonies provide a larger 

variety of niches and are often stable, long-living entities (Kronauer and Pierce 2011). 

The study of non-social arthropod symbionts was initiated by Erich Wasmann who 

categorized species in five groups depending on the interaction with their host 

(Wasmann 1894): 

1. Synechtrans - Persecuted guests: These species provoke host aggression 

and mainly live as scavengers or predators. They can survive in the nest by 

rapid and swift movements, hiding, retracting beneath a hard exoskeleton and 

by secreting chemicals that repel their host.  

2. Synoeketes - Indifferently tolerated guests: These arthropods are mostly 

ignored by their host, because they are either very small, too swift, or are 

apparently neutral in odour. They also live as scavengers or predators inside 

the nest. 

3. Symphiles- True guests: This group comprises the most advanced guests. 

They are treated by their host as real members of the colony. They species 

are groomed, carried around and fed by their host. 

4. Ectoparasites and endoparasites: These are typical parasites that penetrate 

or live on the body of their host. It comprises flies, wasps and nematodes 

whose behaviour is not different from similar parasites targeting non-social 

hosts. 

5. Trophobionts: This group encompasses homopterans and some caterpillars 

that provide honeydew to their host and in return get protection. 

This classification is sometimes ambiguous as some species fall in two or more 

categories. For example RWA workers treat the rove beetle Dinarda maerkelii as a 

symphile by giving it food during trophallaxis, but these beetles also scavenge and 

elicit aggression so that they can also be classified as synoeketes. A simpler 

classification (Kistner 1979) was proposed by David Kistner, a world-leading expert in 

termitophiles. He distinguished integrated species from non-integrated species. 

Integrated species are incorporated in the host’s social life. This category largely 

overlaps with the symphiles of Wasmann. Non-integrated species are not incorporated 
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in the social life of the colony, but are adapted to the nest as an ecological niche. This 

category approximately combines the synechtrans and synoeketes of Wasmann. It is 

clear that these symbionts greatly differ in strategies and mode of specialization. In 

contrast with social parasites that are highly specific to one host, non-social arthropods 

vary in their host specificity. Presumably, the higher the specificity, the more 

specialized the symbiont is. The myrmecophilous springtail Cyphoderus albinus can 

only be found in ant nests, but shows no preference for a particular ant species 

(Donisthorpe 1927). In contrast, some specialized symbionts such as the caterpillar of 

Maculinae rebeli are strictly associated with a single host (Akino and Knapp 1999). 

 

Figure I.1. Types of symbiotic relationships that ant-associate d organisms establish with their ant host. Note tha t these 

types can also be found in other social insects. 

Commensalism: A. Cyphoderus albinus is an obligate, myrmecophilous springtail that feeds on detritus. B. The common isopod 
Porcellio scaber can be abundant in RWA nests where it feeds on organic nest material. C. The mite Hypoaspis oophila lives on 
egg piles of Formica ants. It does not pierce the eggs, but licks the secretions of the egg scales.  

Parasitism: D. The caterpillar of the myrmecophile Maculinea alcon begs for food. This is a highly specialized myrmecophile (= 
symphile) that is nursed by the Myrmica host as its own brood. E. The queen of the social parasitic ant Aphaenogaster 
tennesseensis has usurped a nest of her ant host species Aphaenogaster rudis, whose workers unknowingly tend her and begin 
raising her eggs as their own. As the host queen was killed, this colony will gradually turn into a full nest of A. tennesseensis. F. 
Some fungi are specialized ant parasites, such as Ophiocordyceps that has infested and killed a Camponotus worker in this figure.  

Mutualism: G. Many plant species known as myrmecophytes form mutualistic relationships with ants, in which they provide food 
bodies, nectar and/or a nesting space in special structures and get in return protection against herbivores. Here, Pseudomyrmex 
workers feed on special food bodies provided by Acacia. H. A well-known mutualism is the association between honeydew 
providing insects (aphids, some caterpillars, scale bugs) and ants. The most intimate association has developed between some 
root aphids and Lasius species. The aphids are treated as cattle and transported to the best feeding locations. I. Leaf-cutter ants 
are dependent on a fungus for food. The fungus is cultivated on freshly cut leaves brought into the nest by the ants. 

Gradations: J. Ant-birds follow raids of army ants and feed on the fleeing insects. However, when the density of the birds is high, 
the foraging success of the ants will be significantly reduced. The commensalistic by-product relation then shifts towards 
cleptoparasitism (Wrege et al. 2005). K. Species of the genus Camponotus and Crematogaster can form parabiotic associations. 
It was reported that both ant partners benefit from this associations  (Menzel and Blüthgen 2010). However, in another study 
region it was revealed that only one partner takes advantage (Menzel et al. 2014). The other partner gained no benefits and was 
even exploited to some extent (Menzel et al. 2014).  

Photo Courtesy: A: A. Murray, B-C: T. Parmentier, D: Darlyne Murawski, E-F-G-H-I: Alex Wild, J: Bob Gress, K: Florian Menzel  

 

INTEGRATION STRATEGIES OF SOCIAL INSECT SYMBIONTS 

In the course of adapting to a life with social insects, symbionts have undergone 

evolution in different traits. This is most apparent in specialized symbionts who are one 

of the most spectacular examples of co-evolution to their host (Nash and Boomsma 

2008). Surprisingly, different arthropod groups often evolved independently the same 

traits to promote colony integration. Here we list some of these convergent general 

traits that can be found in large number of social insect symbionts:  
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1.  Chemical cuticular deception 

Social insects possess a complex system of chemical communication which allows the 

discrimination of nestmates from non-nestmates. In particular, each colony carries a 

unique blend of chemical cues on their cuticle that forms the “colony odour”. Workers 

constantly antennate workers that they encounter and compare the perceived odour 

with the template of the colony. When the odours do not match, the worker will reject 

or aggress the alien worker rather than behaving altruistically (Lenoir et al. 2001a). In 

ants, wasps and termites, linear hydrocarbons, i.e. components consisting entirely of 

C and H atoms, mainly serve as cuticular recognitions cues, whereas in bees fatty 

acids and wax esters are also important for nestmate recognition (van Zweden and 

d’Ettorre 2010). The majority of studies on ant nestmate recognition cues report 

hydrocarbons with chain-lengths between C19 and C33. However, heavier 

hydrocarbons are probably much more frequent, but are underestimated because of 

the limitations of most GC columns (Martin and Drijfhout 2009). Both social parasites 

and non-social arthropods are known to crack the host recognition system by 

mimicking the colony odour. They can actively (chemical mimicry) biosynthesize the 

compounds to obtain odour congruency or passively acquire (chemical camouflage) 

the compounds from their host by direct contact with their host (e.g. via allogrooming, 

trophallaxis, rubbing). In addition, symbionts can be chemically insignificant or 

“odourless”, by bearing low concentrations of nest recognition cues (Nash and 

Boomsma 2008, van Zweden and d’Ettorre 2010). Symbionts often combine these 

deception strategies: caterpillar larvae of Maculinea rebeli biosynthesize some 

recognition cues prior to nest penetration and later acquire passively some additional 

hydrocarbons from their host, the cleptoparasite Mutilla europaea carries lower 

concentrations of recognition cues prior to nest invasion of the targeted Polistes wasp, 

but matches its hydrocarbon profile after sneaking into the colony (Uboni et al. 2012). 

Chemical mimicry and camouflage are reported in most non-social arthropod 

symbionts of which the profile was identified yet (Appendix 6-2: Table A-6.3). A few 

symbionts can associate with their host with a different chemical profile without 

provoking aggression. This strategy can be found in some parabiotic symbionts and 

social parasites (Liu et al. 2000, 2003, Menzel et al. 2008a). It is hypothesized that the 

host habituates to the alien profile through a learning process (Menzel et al. 2008a).  
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2.  Glands 

Many of the specialized symbionts (symphiles) release some attracting or 

appeasement compounds from special epidermal glands. The symbionts are regularly 

licked by the host workers. Often they also have yellow brush-like structures, called 

trichomes, which help in the dissemination of the appeasement substances (Fig. I.2.A 

and 1.2.C). Non-integrated species release rather repellent substances to deter their 

host. These glands are already present in free-living relatives (Steidle and Dettner 

1993).  

3.  Morphology 

Morphological regression or the reduction or loss of body parts is a typical 

phenomenon that can be observed. Many species have degenerated mouth parts, 

shortening or loss of wings and reduction or loss of eyes. Symbionts often have a 

limuloid (tear-drop) body form with expanded pronota and elytra covering appendages 

(Wilson 1971). Other typical body forms are flat disks (e.g. Platyarthrus 

hoffmannseggii) and armoured tanks (Histeridae). It is believed that these body forms 

protects the symbionts from host attacks (Fig. I.2). 

 

 

Figure I.2. Morphological variation of some Belgian myrmecophiles. A. Lomechusoides strumosus (Staphylinidae): a specialized 
parasitic myrmecophile that deceives its host Formica sanguinea with glandular secretions. Yellow tufts that promote the spread 
of secretions are indicated by the arrows. B. Lyprocorrhe anceps (Staphylinidae): many myrmecophiles have a relative 
unspecialized morphology that is very similar to free-living relatives. C. Claviger testaceus (Pselaphinae): a specialized parasitic 
myrmecophile with yellow gland tufts and peculiar antennae. D. Atelura formicaria (Thysanura): we discovered this species 
recently in Belgium for the first time (Parmentier et al. 2013). It is a very agile insect with a typical teardrop shape. This shape can 
also be found in myrmecophilous rove beetles. Another typical myrmecophilous trait is the absence of eyes. E. Dendrophilus 
pygmaeus (Histeridae): This family of beetles is pre-adapted to a live with social insects by its hard and protective exoskeleton. 
They can retract their appendages in special grooves when aggressed. Photo courtesy: L.Borowiec, D: T. Parmentier. 
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4.  Behaviour 

Well-integrated species are treated as true colony members, are intensively nursed 

and groomed and can be transported by host workers (phoresy). This is often mediated 

by special appendages or modified antennae of the symbiont that the host workers can 

grab. Non-integrated species avoid their host by rapid and swift movements, feign 

death and hide in small crevices inside the nest (Hölldobler and Wilson 1990). A large 

body of evidence showed that symbionts can follow pheromone trails outside the nest 

(Akre and Rettenmeyer 1968, Akino 2002). This helps the symbiont to follow colonies 

that are moving or to locate new colonies. A diverse group of symbionts sollicits for 

regurgitation of liquid food droplets or directly steals food from two workers in 

trophallaxis (Hölldobler and Wilson 1990) (Fig. I.3).  

 

Figure I.3. A. The rove beetle Dinarda maerkelii is about to steal a food droplet shared by two unsuspecting Formica rufa workers 
in trophallaxis. B. Pausus favieri is one of the most specialized myrmecophiles in Europe and is associated with the smaller ant 
Pheidole pallidula. It mimics the stridulations of the host queen. The arrow indicates the stridulatory organ. They have very peculiar 
antennae that secrete appeasing compounds. Photo: A-B: T. Parmentier. 

5.  Sound 

In general, chemical cues are considered as the main communication cues in social 

insects (Hölldobler and Wilson 1990). However some ants communicate by stridulating 

or drumming the substrate. Recently it was demonstrated that the parasitic beetle 

Paussus mimicks the stridulations of the host queen (Fig. I.3.B) (Di Giulio et al. 2015) 

and Maculinea caterpillars the sound of the host queen larvae (Barbero et al. 2009a), 

resulting in a royal treatment by the workers.  

 

MODEL SYSTEMS 

Red wood ants 

Red wood ants (RWAs), often designated as the Formica rufa group, are a group of 

six (F. rufa, F. polyctena, F. pratensis, F. lugubris, F. paralugubris and F. aquilonia) 

related ant species belonging to the subgenus Formica s. str (Goropashnaya et al. 
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2004). They are distributed across forests, woodlands and heathland across Eurasia 

(Seifert 2007). The above ground part of the nest are conspicuous mounds made from 

organic material, twigs and needles (Fig. cover page chapter 1). In spring, the inner 

part of these mounds starts to heat up to temperatures about 10-20 °C higher than 

ambient conditions by a combination of efficient solar collection, endogenous 

metabolic heat production of the ants and microbial decomposition (Rosengren et al. 

1987). These high temperatures, which are maintained until the end of autumn, 

promote rapid brood development throughout a large part of the year in cold and 

temperate climates and are likely key in the ecological success of RWAs (Rosengren 

et al. 1987, Gösswald 1989a). RWAs are relatively large ants and the workers differ in 

size, ranging from 4.5 mm to 9 mm. In spite of their morphological and genetic 

similarities, RWA species tend to differ in ecological organization (Goropashnaya et al. 

2004, Seifert 2007). For example, colonies of F. polyctena typically contain multiple 

queens (polygynous) and their nests consist of a large network of interconnected 

mounds (polydomous). Colonies of Formica rufa and F. pratensis are rather headed 

by a single queen (monogynous) and their nest is limited to a single independent 

mound (monodomous) (Seifert 2007). In polygynous species, colonies multiply by a 

group of workers and queens of the mother colony that found a new colony in the 

neighbourhood (cf. swarming in honey bees). In monogynous species, queens 

disperse by flight and establish new colonies by temporally parasitizing ants of the 

Formica subgenus Serviformica. There are also differences in habitat preference 

among RWAs (Seifert 2007). Formica polyctena prefers to nest in inner forests, 

whereas F. rufa is mainly found along forest edges and F. pratensis is distributed in 

more xerothermic habitats such as heathland (Seifert 2007). In Belgium and Northern 

France, three species of RWAs can be found: F. rufa, F. polyctena and F. pratensis. 

We sampled ten sites in Flanders and one in Northern France. Surprisingly, the 

differences in ecological organization and habitat preference between the RWA 

species pinpointed above, are less clear-cut in our study sites. Most nests are found 

along forest edges and all species construct highly polygynous networks of nest 

mounds, which can be explained by a lack of independent colonization opportunities 

due to severe habitat fragmentation and a shortage or absence of Serviformica’s 

(Loones et al. 2008). RWA numbers are declining because of habitat destruction and 

fragmentation, agriculture, commercial collection of pupae for bird food and lack of 

appropriate habitat management (Dekoninck et al. 2010). All six species of the F. rufa 

group are listed on the IUCN red list and are protected in many European countries. 

The three RWA species (F. rufa, F. polyctena and F. pratensis) that occur in Flanders 
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are protected under an act of 2009: “het Soortenbesluit”. They gain a lot of attention 

because of their multi-facetted key-stone role in forest ecosystems (Gösswald 1989a). 

They are dominant ants affecting the distribution of other ant species and arthropods. 

They are predators of most arthropods, affect the dynamics of food webs and can 

control pest insects (Skinner 1980, Gösswald 1989a, Hawes et al. 2002). They can 

have a positive effect on tree and shrub growth by preying on herbivores. However, 

they can have a negative effect by tending aphids whose honeydew is the main food 

source of RWAs (Gösswald 1989b). By collecting huge amounts of organic material, 

prey and honeydew, they strongly affect chemical, physical and biological properties 

of the soil and create patchy hotspots for mineralization (Lenoir et al. 2001b, Frouz and 

Jilková 2008). Wood ants also play an important role as seed dispersers (Gorb and 

Gorb 1999) and are a predictable food source for a diverse group of species such as 

woodpeckers and bears in winter (Gösswald 1989b). Finally RWAs support a large 

group of of strictly and facultatively associated myrmecophiles around or inside their 

nests (Donisthorpe 1927, Robinson and Robinson 2013), which capitalize on the ideal, 

thermoregulated nest conditions and the constant supply of food and organic material 

(Kronauer and Pierce 2011). Diverse aspects of RWA ecology such as their interaction 

with prey and aphids, social organization, kin recognition, task distribution and 

response on habitat deterioration have been intensively studied. Surprisingly few 

studies examined the associated myrmecophiles. At the start of this thesis, there were 

a few faunistic studies that merely listed RWA myrmecophiles found in particular 

regions (e.g. Lapeva-Gjonova and Lieff 2012, Robinson and Robinson 2013), but 

studies exploring the interaction with their host were completely lacking. 

Parabiotic microcosm 

The ants Platythyrea conradti and Strumigenys maynei are distributed throughout 

tropical Africa (Bolton 2000). They normally live not in association with each other, but 

in the nature reserve of Lamto, Ivory Coast, both species were mosty found together 

in hollow tree nests (Yéo et al. 2006). Possibly, both species are also associated in 

other localities, but this requires a careful inspection of the nests. The brood of these 

species is kept separated in the compound nests. The ant partners behave friendly 

and have apparently no negative impact on each other (Yéo et al. 2006). Hence this 

association can be classified as parabiosis. The parabiotic relationship between these 

ants is remarkable, because of the extreme size differences between the ant partners. 

Strumigenys maynei is a tiny ant (2.5 mm) from the Myrmicinae subfamily, whereas P. 

conradti is a large Ponerine ant (15 mm). Interestingly, these compound nests also 
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house a diverse community of myrmecophiles, including Collembola, Staphylinidae, 

Pselaphinae, Scydmaeninae, Pseudoscorpiones, Acari, Araneae and Thysanura. 

Their abundance and diversity might be explained by the organic material that is 

carried to the nest by P. conradti and is found throughout the nest and seals the large 

nest opening. In analogy to the organic material in RWA mounds, this material might 

provide shelter, food and help to maintain homeostatic conditions in the nest. These 

parabiotic nests hence support similar microcosms as RWA nests. However, because 

of two host ants, we are able to test whether the hosts interact differently with the 

myrmecophile community.  

 

AIMS AND OUTLINE OF THIS THESIS 

During the last 30-40 years, considerable progress has been made in the study of 

social insect symbionts and the interaction with their host. However, studies typically 

explored social insect-symbiont interactions by focusing on the interaction between a 

host and a single symbiont. In this thesis, we tried to investigate ant-symbiont 

relationships from a community perspective, i.e. exploring the interactions between a 

host and multiple symbionts, but also among the symbionts themselves. By scaling-up 

to a community approach, different strategies of symbionts associated with the same 

host can be compared and linked with other parameters. Moreover, studies were 

hitherto severely biased towards integrated symbionts, although non-integrated 

species probably outnumber this very specialized group. Symbionts of RWAs are not 

very specialized and not well-integrated in the colony. Therefore the RWA model 

system gave us a unique opportunity to test whether the mechanisms postulated in 

integrated species also apply for less specialized species. The parabiotic microcosm 

model system also sheds new light on our understanding of social insect symbionts as 

two levels of symbiotic interactions, i.e. myrmecophile-host interactions and host-host 

interactions, are jointly examined for the first time.  

This thesis integrates spatial ecology, ethology, trophic ecology and chemical ecology 

in an evolutionary framework. In particular, the interactions between myrmecophiles 

and (i) the environment, (ii) the host and non-hosts and (iii) other myrmecophiles were 

examined. These interactions are schematically summarized in Fig. I.4 and Fig. I.5. 

We start with Chapter 1 , where all known arthropods associated with RWAs are 

reviewed. Chapter 2  is a classic ecological and hence a rather stand-alone chapter in 

which we explore the underlying abiotic processes that drive RWA distribution and 

diversity. In Chapter 3, we describe that particular RWA worker groups are specialized 
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in deterring parasitic symbionts. Chapters 4, 5 and 6 study the interactions between 

RWAs and the symbionts from a community perspective. They focus respectively on 

trophic interactions in RWA mounds, the association between level of nest integration, 

brood predation tendency and aggression elicited and chemical integration 

mechanisms. In Chapter 7 , survival of obligate and facultative symbionts was tested 

in a test set-up with their aggressive RWA host and non-preferred ant hosts. Chapter 

8 deals with the parabiotic model system. We report a putative mutualistic relationship 

between the two ant species and test chemical integration on two levels: (1) 

Platythyrea vs. Strumigenys, (2) myrmecophiles vs. these 2 co-inhabiting ant species. 

The thesis ends with a discussion, which summarizes the novel findings of this thesis 

and discuss these in the framework of host-symbiont interactions. I also present some 

interesting research avenues, which can further stimulate the study of social insect-

symbiont interactions. 

 

 

 

Figure I.4. Overview of the tested interactions in model system 1: Red wood ants. Myrmecophiles are depicted in the black ovals, 
non-host ant species are represented by figures of Lasius fuliginosus (black ant) and Myrmica ruginodis (orange-red ant). Photo: 
T. Parmentier. 
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Figure I.5. Overview of interactions tested in model system 2: Parabiotic microcosm. Two different parabiotic nests in hollow trees 
are depicted. The large black ant is P. conradti, the small orange-brown ants S. maynei. Myrmecophiles are depicted in the black 
circle. Alien ant species are represented by two ant species: Oecophylla longinoda and Monomorium pharaonis. Photo courtesy: 
T. Parmentier, except for picture of O. longinoda and M. pharaonis that were adapted from pictures of A. Wild. 
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ABSTRACT 

 

The importance of Eurasian red wood ants (RWAs) (Formica rufa group) in forest and 

heath ecosystems has long been recognized. One key function of RWAs is the role of 

their nests in supporting an intriguing ecosystem of a highly diverse group of obligate 

myrmecophiles and facultative guests. In this review we list 125 obligate arthropod 

myrmecophiles that occur in RWA mounds or in the near vicinity of the mounds. About 

half of them are Coleoptera, but also Hemiptera, Diptera, Hymenoptera, Acari and 

Aranea are well represented. RWAs are estimated to be the primary host for 49 

species. 24 species were hitherto only recorded to be associated with RWAs, 12 with 

both RWAs and other mound building Formica species and 9 were found to be 

associated with both mound building and non-mound building Formica species. The 

remaining associates are less specific and can be found with other ant genera or ant 

subfamilies. Other mound-building Formica ants (Coptoformica, F. uralensis and F. 

truncorum) support fewer species, most of which are known to also occur with RWAs. 

We discuss the biology of the different obligate myrmecophilous groups and give 

general notes on the facultative guests found in RWA mounds. We stress the 

importance of the conservation of RWAs as hosts of one of the richest and diverse 

associations known to date in insects.  
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INTRODUCTION 

Eurasian red wood ants (RWAs) (Formica rufa group belonging to the subgenus 

Formica s.str.) are represented by six narrowly related and morphologically similar 

species: F. rufa, F. polyctena, F. pratensis, F. aquilonia, F. lugubris and F. paralugubris 

(Goropashnaya et al. 2004, Seifert 2007). The mounds of these well-studied species 

are impressive markers in temperate and boreal forests and heath land across Eurasia. 

Their key roles have been appreciated since long: they are top predators that have a 

potential to control outbreaks of pest insects, they create nutrient heterogeneity in 

forests by concentrating food and organic material in their mounds and structure biotic 

and abiotic components of forests outside their nests (Gosswald 1989, Frouz 2000, 

Frouz et al. 2005, Domisch et al. 2008, Wardle et al. 2011). In addition, the presence 

of RWAs is vital for a large number of associated species living in the mounds or in 

their vicinity. The unique aspect of these species is that they evolved mechanisms to 

overcome the aggression of their hosts and benefit from the resources and ideal nest 

conditions provided by their ant hosts. Since the 19th century naturalists began to focus 

on the diversity and biology of RWA myrmecophiles. In the last decades, more and 

more elements of their hidden lifestyle have been revealed and the list of associated 

species has been growing longer and longer.  

The striking diversity of RWA myrmecophiles can mainly be explained by the nest 

structure of RWAs. Their huge mounds provide stable and long-lasting habitats with 

controlled temperature and moisture (Rosengren et al. 1987, Frouz and Finer 2007). 

The mounds are also heterogeneous in temperature, moisture and material (organic 

thatch material, inorganic soil, central stem) which create a large variety of 

microhabitats (Coenen-Stass et al. 1980, Rosengren et al. 1987). Furthermore, there 

is a constant supply of food and organic material which can sustain different trophic 

groups such as parasites, predators, scavengers, detritivores and mycophages 

(Skinner 1980). Additionally, some species are attracted by the ant-tended aphid 

colonies that are typically present in the vicinity of the mounds.  

Here we did an exhaustive literature survey on RWA arthropod myrmecophiles. 

Literature search started from general reviews or studies on myrmecophiles. Then we 

scanned all groups for more specific published studies on RWA myrmecophiles. We 

aim to highlight the diversity of arthropods associated with Eurasian RWAs and discuss 

their biology, distribution and host ant preference. We also give some notes on 

facultative associates which depend on RWAs and stress the need for RWA 

conservation and its associated myrmecophile community.  
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RWA MYRMECOPHILES: OVERVIEW 

In our survey, we found reports of 125 arthropod myrmecophiles that have been found 

in association with RWAs (Table A-1.1 in Appendix 1-1 chapter 1). Most of these live 

in the nests and are called inquilines. Additionally, some species live in the 

neighbourhood of the nest or are parasites. Most species occur in nests of several ant 

hosts, whether or not belonging to different genera. Taxonomic information of the listed 

host ant species can be found in Table A-1.2 in Appendix 1-1 chapter 1. Most studies 

focused on myrmecophilous beetles. This sampling bias could contribute to their 

proportional high diversity. Other groups such as mites, flies and wasps are expected 

to have much more representatives, but studies on their diversity are hampered by less 

search effort, taxonomic problems (e.g. cryptic species) and poorly known distribution. 

The latter makes it hard to judge whether a species is strictly associated with ants or 

also occurs outside ant nests. 

For many myrmecophiles, little is known about the biology or the actual type of 

interaction with the host ant, i.e. whether it is parasitic, commensalistic or mutualistic. 

What is known about their biology, however, is reviewed below according to the 

taxonomic group to which they belong. 

 

 

 

Figure 1.1. Taxonomic distribution of myrmecophiles associated with RWAs. 
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Coleoptera 

More than 40 % RWA myrmecophiles belong to this highly diverse group (Fig. 1.1). 

Rove beetles and particularly the subfamily Aleocharinae, dominate the list of beetles. 

Traditionally, taxonomy, distribution and behaviour of the Coleoptera were best studied 

(Donisthorpe 1927, Janet 1897, Wassmann 1894, Hölldobler and Wilson 1990). 

Myrmecophilous beetles range from highly integrated guests that are treated as 

nestmates (licking, feeding), to poorly integrated species that are heavily aggressed 

by the ants. Lomechusa (former Atemeles) and Lomechusoides (former Lomechusa) 

are text-book examples of highly integrated species. Lomechusa pubicollis adults 

emerge in a RWA nest in autumn and overwinter in a Myrmica nest. After hibernation 

they seek again adoption in a RWA nest to breed. Lomechusoides adults, in contrast, 

integrate in a nest of the same host ant species (Hölldobler and Wilson 1990). Larvae 

and adults of Lomechusa and Lomechusoides have special glands that produce highly 

attractive substances. They live among the brood and are fed, licked and carried by 

the workers. They also feed on the brood of their host (Hölldobler 1967, Hölldobler 

1970). Hetaerius ferrugineus is a histerid beetle which is also highly integrated. It is a 

scavenger, but also solicits for liquid food and occasionally consumes ant brood. It is 

suggested that adoption is promoted by special trichome glands opening at the margin 

of the thorax. In case of an attack, it feigns death by oppressing its legs against its 

body (Hölldobler and Wilson 1990). The rove beetle Dinarda is less integrated, but also 

steals regurgitated food from their ant host (Fig. 1.2.A and Fig. I.3.A in Introduction). 

When discovered, the beetle raises its abdomen and offers appeasement substances. 

If ant hostility continues, they still can rely on repellent secretions from the tergal gland 

(Hölldobler and Wilson 1990). “Poorly” integrated rove beetles avert aggression by 

swift movements and/or by emitting repellent substances from their tergal gland 

(Hölldobler and Wilson 1990). Some of them, such as Quedius brevis and Zyras 

humeralis, are mostly found in the winter when ant aggression is lowest (unpub. data) 

(Fig. 1.2.A). Many beetles are hardly noticed by the ants due to their small size and 

slow movement (e.g. Monotoma, Ptiliidae, Scydmaenidae, Pselaphinae) (Fig. 1.2.A). 

Scydmaenidae, like Staphylinidae and Ptiliidae, are predisposed to a life in ant nests 

composed of decaying material (RWA, Lasius brunneus, Lasius fuliginous) by their 

preference for moist forest soils and rotten logs (Freude et al. 1974). O’Keefe (2000) 

mentions no less than 31 Scydmaenidae species associated with RWAs. Most of them, 

however, can regularly be found in absence of ants in leaf litter, rotten logs and are 

rather facultative associates than obligate myrmecophiles (Freude et al. 1974, Tykarski 

2013). Here we limit Table A-1.1 to Scydmaenidae that are classified as 
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myrmecophiles according to Freude et al. (1974) and Tykarski (2013). Some 

associated beetles live (partly) outside the mound. Adults and larvae of the ladybird 

Coccinella magnifica are typically found on the vegetation and on the trails near RWA 

mounds (Fig. 1.2.C). Both feed on the aphid colonies tended by the ants. It was 

suggested that the adults can follow the trails of RWAs (Godeau 2008). The behaviour 

of the ladybird is only slightly modified compared with its non-myrmecophilous 

congener C. septempunctata. They overcome ant aggression by running away and 

ducking down and possibly employ chemical adaptation (Sloggett et al. 1998). Clytra 

are remarkable leaf beetles with red elytra and black patches. Adults live on the trees 

and herbs near the nest and feed on plant leaves (Fig. 1.2.D). The female drops the 

eggs near the nest and covers them with her excreta. The covered egg is very similar 

to plant material and is as a result sometimes carried by the ants and incorporated in 

the nest (Donisthorpe 1927). The emerged larva permanently lives in the nest and 

builds a protective case of its own excreta and earth. It mainly feeds on organic nest 

material and detritus (Fig. 1.2.A). Full grown larvae attach to the central stem or debris 

and pupate in their larval case (pers. obs. TP). Protaetia metallica (sometimes 

considered as a subspecies of Protaetia cuprea: Protaetia cuprea metallica, but see 

Renneson et al. 2012) has a similar alternating life cycle, with free-living adults and 

larvae confined to the mounds (Donisthorpe 1927, Renneson et al. 2012) (Fig. 1.2.B). 

The larvae, however, are not protected by a case, but resist attack by their though skin 

and by boring deeper into the nest (Donisthorpe 1927). 

The highly integrated beetle species have special glandular adaptations to a 

myrmecophilous lifestyle. Adaptations of other beetles are less pronounced. They are 

morphologically very similar to nonmyrmecophilous relatives. The slender and small 

size of most beetles protects them of attacks. Still, the antennae of some rove beetles 

associates (Thiasophila, Notothecta, Dinarda) are relatively compact to better 

withstand ant attacks (Freude et al. 1974) (Fig. 1.2.A). Many myrmecophiles are known 

to mimic the cuticular chemical profile (chemical mimicry) of their ant host or have 

adaptations to remain undetected (chemical camouflage) (Akino 2008). These 

strategies have hitherto not been demonstrated in RWA myrmecophilous beetles or in 

other RWA myrmecophilous groups (but see chapter 6). 

Diptera 

Syrphid flies of the genus Microdon are the best studied myrmecophilous Diptera. 

Three species with a broad host range are known to be associated with RWAs. Adult 

flies look like typical flies, whereas the larvae have a unique slug like appearance and 
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locomotion. Young larvae are typically found deep in the nest and feed on detritus and 

ant brood. Larvae of M. mutabilis are ignored or if attacked by an ant worker, they seem 

unattractive. Nearctic Microdon larvae seem to be more integrated as they engage in 

chemical cuticular mimicry and are transported and licked by their hosts (Howard et al. 

1990a, b). Older Microdon larvae migrate to the periphery of the nest where they 

pupate. The adults only live a few days and hover and mate in the near proximity of 

the nest where they emerged. Microdon populations are typically localized while 

potential hosts are widespread. Elmes et al. (1999) demonstrated that the survival of 

the eggs of M. mutabilis in Formica lemani declined dramatically when introduced in 

conspecific colonies situated only a few hundred meters away. The flies display 

extreme local adaptation not to one species, but to a local population of ants. Infiltration 

of M. mutabilis in the host ant nest doesn’t involve chemical mimicry as demonstrated 

in Nearctic Microdon species (Hovestadt et al. 2012). It is probably mediated by a 

mimetic chemical coating on the egg scale (Elmes et al. 1999). 

Information on the other Diptera is scarce. The adults of Phyllomyza formicae and 

Forcipomyia myrmecophila hover over the nests of mound-building Formica’s and the 

larvae live in the nests, probably as scavengers. Holoplagia transversalis can be seen 

running on the trails and nest of its primary host Lasius fuliginosus, but it can also be 

collected with RWAs (Donisthorpe 1927).  

Hemiptera 

In this order, we find inquilines that live in the RWA nests and species outside the nest 

and on trees in company with foraging ants. Species living outside the nest are mainly 

ant mimics gaining protection against their enemies by their resemblance to ants. They 

typically prey upon aphids or other insects, but also consume plant saps and honeydew 

(Wachmann et al. 2007). Pilophorus cinnamopterus and Pilophorus perplexus are 

rapid ant-like bugs with transverse silvery bands on the wings formed by pale hairs 

(Donisthorpe 1927, Wachmann et al. 2007). Myrmecoris gracilis is a better mimic, with 

nymphs resembling dark Lasius workers and adults Formica workers (Wachmann et 

al. 2007). In constrast to Pilophorus, they have a petiolar constriction. The behaviour 

and appearance of the early stages of Alydus calcaratus are also very ant-like. It occurs 

in heath land often in association with F. rufa, but also with other Lasius and Formica 

species (Fig. 1.2.E). Xylocoris formicetorum and Notochilus limbatus are two bugs 

occurring in the nests of mound-building Formica’s. Both species are not ant-like and 

little is known about their life-history (Donisthorpe 1927, Wachmann et al. 2007). They 

seem weakly integrated in the nests and probably hunt for mites and other mound 
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associates (Wachmann et al. 2007). Eremocoris abietis, which is also not ant-like, can 

be found outside the nest and in the mounds where it most likely lives as a scavenger 

(Wachmann et al. 2007). Wasmann (1894) and Donisthorpe (1927) also report an 

association of Himacerus mirmicoides, Megacoelum beckeri, Philomyrmex insignis 

and Myrmedobia exilis with RWAs, but it is unlikely that this represents an obligate 

association (Wachmann et al. 2007). 

Hymenoptera 

The best known representative of this order is the inquiline ant Formicoxenus nitidulus 

which lives in the nests of mound-building Formica’s. Interestingly, the males are 

wingless and mating occurs on the mound surface. Formicoxenus is a small genus of 

social parasites with a xenobiotic lifestyle, i.e. they nest in the mound of RWAs, move 

freely among the hosts and obtain food from them, but their brood is kept separated 

(Hölldobler and Wilson 1990). F. nitidulus is less associated with their hosts than the 

highly specialized congeneric species F. quebecensis and F. provancheri who are 

associated with a single Myrmica host and constantly lick their host to acquire cuticular 

hydrocarbons. In contrast, F. nitidulus have 11 hosts (Martin et al. 2007) and do not 

interact with their host. They are largely ignored and when seized, dropped 

immediately because of an unattractive cuticular odour. They use a generalist chemical 

deterrent strategy which can applied to several hosts, as opposed to chemical mimicry 

directed to one host species (Martin et al. 2007). Solenopsis fugax is another ant which 

can be found in RWA mounds, but also in nests of many other species. This tiny ant 

gets access to food and brood of their host by small galleries which are too narrow for 

their host (Janet 1897, Donisthorpe 1927).Several wasps belonging to different 

families have been found hovering above RWA mounds. Trichopria fuliginosa and 

Conostigmus formiceti even live in ant mounds seemingly unharassed. For most 

species, little is known about their biology. They probably parasitize on the ant workers 

in or outside the nest, ant brood or other arthropods found in the nests. The oviposition 

behaviour of some ant parasitoids was recently recorded in detail (Gómez Durán and 

van Achterberg 2011). Elasmosoma, Kollasmosoma and Neoneurus hover patiently 

over ant nests, then swiftly strike at an ant worker and finally oviposit with a hook-

shaped ovipositor in the ant’s gaster. They parasitize mostly Formica and it has been 

hypothesized that formic acid secreted by those ants could be a powerful attractant 

(Gómez Durán and van Achterberg 2011). Hybrizon buccatus was observed while 

hovering over a Lasius grandis trail. Here, no oviposition was found on adult ants. 

Surprisingly, the wasp grasped a larva being transported on the trail and inserted an 
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egg. The grasping of the ant or larva by the legs and the insertion of the ovipositor are 

species-specific for the ant parasitoids.  

Lepidoptera 

From this order, only the moth Myrmecozela ochraceella lives in strict association with 

RWAs (Wasmann 1894, Donisthorpe 1927). The larvae crawl through the nest and 

feed on the nest material. Similar to the case-building Clytra larvae, they spin tubes of 

silk and nest material in which they live and pupate. The yellowish adults reside in the 

vicinity of the mounds, but can also be found on and in the nest mounds (Donisthorpe 

1927). The well-studied Maculinea butterflies are confined to Myrmica nests and do 

not associate with RWAs. 

Acari 

Mites are the most diverse group found in RWA mounds, both in terms of abundance 

and number of species (Kielczewski and Wisniewski 1962). The presented list of mites 

associated with RWAs probably reveals only the tip of the iceberg. Hypoaspis oophila 

is the most conspicuous mite as it exclusively lives in large number on ant eggs. It 

appears that this mite does not puncture the eggs, but rather feeds on secretions 

coating the eggs (Donisthorpe 1927). Most species are likely scavengers and some 

are known to be phoretic (Donisthorpe 1927).  

Araneae 

The associated spiders can be divided into three groups: species that permanently live 

inside the mounds (= inquilines), myrmecomorphic species and myrmecophages. 

Thyreosthenius biovatus is a representative of the first group and only occurs in RWA 

mounds, but is probably abundant and widespread in RWA populations (Fig. 1.2.A and 

1.2.F). This spider was found in 80 % of RWA mounds in northern Flanders, Belgium 

(unpub. data TP). The spider hardly elicits aggression and can walk freely among their 

ant host. Nymphs and females can be found throughout the year. Males are less 

abundant than females and probably occur only in spring and summer (pers. obs. TP). 

The heads of the males are raised in a conspicuous large lobe. Mastigusa arietina has 

a larger host range but is regularly associated with RWAs (Parmentier et al. 2015a). 

The white egg packets attached to wood pieces in the nest reveal their presence. 

Those spiders are mostly killed when placed together with RWAs in a cup, suggesting 

that this species is less integrated than T. biovatus (pers. obs. TP). The male palps are 

remarkably long and whip-like. Sometimes another morphologically similar species, 

Mastigusa macrophthalma is distinguished, but this is likely a subspecies (Heimer and 
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Nentwig 1991).The primary host of the inquiline spider Acartauchenius scurrilis is the 

small ant Tetramorium caespitum, but association with RWAs is also recorded 

(Donisthorpe 1927). The second group comprises spiders that imitate their ant host 

morphologically and behaviourally, so-called myrmecomorphic spiders. Three ant-

mimicking spiders have been found in the vicinity of RWAs: Myrmarachne formicaria, 

Phrurolithus festivus and Micaria fulgens (Donisthorpe 1927). Myrmarachne formicaria 

waves its forelegs to imitate antennation and walks very ant-like (Shamble et al. 2013). 

The chelicerae of the male of this spider are very pronounced. There is little information 

on the biology of those species, but most myrmecomorphic spiders are considered 

Batesian mimics (Cushing 1997). Many animals do not prey on ants due to their toxity, 

distastefulness and aggressive nature. By mimicking ants, myrmecomorphic spiders 

deceive potential predators and are avoided (Cushing 1997). Recently Davidson 

reported on the myrmecophagous behaviour of Dipoena torva. This spider feeds 

exclusively on RWAs (F. aquilonia) in Scotland. It lives high on the tree stems and 

spins silk threads between the bark. RWA foragers get tangled with their antennae in 

the threads and are pierced by the spider in the soft membrane at the base of the 

antennae. The spider then manipulates the subdued ant away from the bark surface. 

Finally, the ant corpse hangs freely and is only attached to the stem with a small silk 

thread. This allows the spider to devour the ant without being attacked by other 

foragers (Fig. 1.2.G). Simon (1997) reported the occurrence of this spider with RWAs 

(F. polyctena) in Germany, but its dietary preferences and the behaviour of this spider 

remain unknown. Dipoena tristis has a similar hunting strategy and has been found 

mostly on grass halms near the nest of Formica species (Wasmann 1899). 

Pan myrmecophilous species 

Some obligate myrmecophiles do not show host preference and are associated with 

almost all ants in their habitat. Cyphoderus albinus, Atelura formicaria, Platyarthrus 

hoffmannseggii and Myrmecophilus acervorum are four typical panmyrmecophilous 

species that also co-occur with RWAs. They are the only representatives of the orders 

Collembola, Zygentoma, Isopoda and Orthoptera. They are all well-adapted to a life 

underground: they lack or have greatly reduced eyes, C. albinus and P. hoffmannseggii 

are white in color and M. acervorum has lost its wings (Donisthorpe 1927, Junker 

1997). C. albinus is very characteristic by its erratic movements, P. hoffmannseggii by 

its thick, vibrating antennae (Fig. 1.2.A). A major part of M. acervorum’s diet consists 

of fluids regurgitated (trophallaxis) by the ant host (Junker 1997). Both C. albinus and 

P. hoffmannseggii can reach high population densities in RWA mounds (unpub. data). 
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Figure 1.2. Overview of RWA myrmecophiles. A. A myrmecophile bestiary found in a Formica rufa nest in northern Belgium: (1) 
Dinarda maerkelii, (2) Amidobia talpa, (3) Thyreosthenius biovatus, (4) Clytra quadripunctata, (5) Leptacinus formicetorum, (6) 
Platyarthrus hoffmannseggii, (7) Thiasophila angulata, (8) Stenus aterrimus, (9) Monotoma, (10) Quedius brevis, (11) Notothecta 
flavipes, (12) Lyprorcorrhe anceps, (13) Myrmetes paykulli. B. The imago of Protaetia metallica (photo courtesy of J.-L. Renneson). 
C. A F. pratensis worker inspects a Coccinella magnifica searching for aphids above a nest mound. D. Clytra quadripunctata 
imago above an F. rufa nest. E. Nymphs of Alydus calcaratus are morphological mimics of Lasius and Formica ants (photo 
courtesy of Andreas Haselböck). F. Thyreosthenius biovatus with an F. polyctena worker. G. The myrmecophagous spider 
Dipoena torva feeds on an F. lugubris worker (photo courtesy of Gus Jones BSCG). Photo A, C, D, F by Thomas Parmentier. 
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FACULTATIVE GUESTS 

A vast array of species that are well-known from outside ant nests were recorded in 

RWA mounds (Kielczewski and Wisniewski 1962, Hlaváč and Lackner 1998, Laakso 

and Setälä 1998, Stoev and Lapeva-Gjonova 2005, Lapeva-Gjonova and Lieff 2012, 

Boer 2013, Robinson and Robinson 2013, Härkönen and Sorvari 2014). Those species 

complete normally their life cycle without ants, but can facultatively be associated with 

RWAs. Some of the recorded species simply landed coincidentally in the mounds. 

However, many species across diverse taxa thrive in large numbers in the nests. Those 

species are attracted by the enrichment of organic material, ideal climatic conditions 

and constant supply of nutrients in the mounds. A study in Finland showed that the 

biomass of earth worms was about seven times higher in RWA mounds than in the 

surrounding soil. Their biomass exceeded the biomass of all other associates (Laakso 

and Setälä 1997). Earthworms are much rarer in RWA mounds in Northern Belgium. 

Instead they are dominated by the common woodlouse Porcellio scaber (pers. obs. 

TP, WD). Some species, such as Xantholinuslinearis and Drusilla caniculata, were 

designated as myrmecophiles because they often co-occur with ants. They can, 

however, also live away from ants and are therefore no myrmecophiles in the strict 

sense. The facultative myrmecophile fauna of RWAs consist mainly of animals 

associated with decaying vegetable matter and bark. This includes Collembola, Acari, 

Pseudoscorpionida, Chilopoda, Diplopoda, Isopoda, Nematoda, Ptiliidae, 

Scydmaenidae, Staphylinidae and Psocoptera (Boer 2013, Robinson and Robinson 

2013, pers. obs. TP, WD). Those species are mostly ignored by their size (Collembola, 

Acari, Psocoptera) or they can avert ant aggression by swift movements 

(Staphylinidae, Chilopoda). Other ants, such as Leptothorax acervorum, have also 

been recorded in wood ant mounds (Donisthorpe 1927). Isopods and diplopods have 

a strong exoskeleton, but they are rarely attacked. The concentration of cuticular 

hydrocarbons, which ant use as kin recognition keys, are probably low in those species 

as suggested in Kärcher and Ratnieks (2010). When there are few records of a 

species, it can be troublesome to determine its status as an obligate or facultative 

associate. For example, Henderickx (2011) described a new myrmecophilous 

pseudoscorpion species Allochernes struyvei based on individuals found in one F. 

paralugubris mound. More records, however, are needed to confirm its status of true 

myrmecophile. 
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DISTRIBUTION  

Eurasian RWAs have a very broad distribution covering boreal and temperate Europe 

and large parts of Russia (Goropashnaya et al. 2004). The distribution of many 

associated RWA myrmecophiles is concordant with their host ant species. For example 

the beetles Thiasophila angulata, Amidobia talpa, Monotoma conicollis are recorded 

with RWAs in Great Britain, Scandinavia, continental Europe and Siberia. In contrast, 

some of the listed species have a narrower distribution. Clytra laeviscula for example 

is restricted in Europe to the southern and central part, while the related Clytra 

quadripunctata can found throughout Europe with RWAs. Atelura formicaria and 

Myrmecophilus acervorum are also thermophilous species that do not live in northern 

Europe. The hidden life of the associates makes it hard to estimate their abundance. 

Some species are fairly common in RWA populations and can attain high local 

densities (Päivinen et al. 2004, unpub. data), but wasps, flies and true bugs are much 

rarer and some of them are hardly recorded. This difference however can be partly 

attributed to a focus on the study of myrmecophilous beetles while other groups are 

often neglected.  

 

HOST PREFERENCE 

RWAs are believed to be the primary host of about 40 % of the species in our survey 

(Table A-1.1: indicated with *). Moreover, 24 species have hitherto only been recorded 

with RWAs (Fig. 1.3) (Note that some poorly known species, especially mites, could 

have a broader host distribution than hitherto recorded). Additionally, there are 

indications that some RWA myrmecophiles prefer a particular RWA species, e.g. 

Oxypoda pratensicola and Thiasophila lohsei typically live in association with F. 

pratensis. Some species are restricted to mound building Formica’s, which includes 

RWAs, F. truncorum (Formica s. str.), Coptoformica and F. uralensis (Table A-1.3 in 

Appendix 1-1 chapter 1). Mound building Formica species that do not belong to the F. 

rufa group have a less diverse myrmecophile association: 46 associates (species listed 

in Table A-1.1 + two panmyrmecophilous species + species Table A-1.3) have been 

found with Coptoformica, F. truncorum and F.uralensis so far, from which only five 

species have not recorded with RWAs (Table A-1.3). Conversely, there are 84 RWA 

myrmecophiles not found with other mound building Formica’s. Some species such as 

Dinarda hagensii and Thiasophila canaliculata have F. exsecta (Coptoformica) as 

primary host. The lower diversity of myrmecophiles associated with non-RWA mound 

building Formica’s can be explained by a smaller geographic range, smaller nests and 
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possibly also by a sampling bias. A few species can be found with several species of 

the genus Formica, including both mound-building Formica ants as well as 

Raptiformica (F. sanguinea sometimes builds small mounds, but is here not considered 

as mound building because it nests can regulary be found under stones, in the ground 

or in tree trumps) and Serviformica ants. RWA queens found new colonies by 

parasitizing Serviformica colonies (Hölldobler and Wilson 1990). This take-over 

behaviour could promote the association of myrmecophiles both with Serviformica and 

mound building Formica’s. A large part of the species has also been found with 

Camponotus and/or Lasius, two other genera of the subfamily Formicinae. RWAs 

share many myrmecophiles especially with L. fuliginosus and L. brunneus, probably 

because they all construct nests with decaying organic material. About a quarter of the 

myrmecophiles has also been found with other subfamilies of the Formicidae. These 

include the panmyrmecophilous species, but also other species with more restricted 

host range across non-related taxa (e.g. Lomechusa species that switch host in winter). 

Many myrmecophiles succeeded to integrate in the wood ant mounds, but few are host 

specific (24 species exclusively found in RWAs). It can be expected that most species 

associated with RWAs rather apply general strategies, such as swift movements, 

defence chemicals (Staphylinidae: tergal gland), small compact size, hard 

exoskeleton, chemical insignificance, death feigning, ducking and avoidance. These 

general strategies facilitate easy host switching. 

 

CONSERVATION 

RWAs populations are under increasing pressure by intensive agriculture, habitat 

fragmentation, deforestation, urbanization, habitat deterioration (e.g. overgrowing 

shrubs) and recreation (Gyllenstrand and Seppä 2003, Sorvari and Hakkarainen 2005, 

2007, Mäki-Petäys et al. 2005, Dekoninck et al. 2010). The six species of the F. rufa 

Figure 1.3. Taxonomic distribution of all recorded hosts of myrmecophiles associated with 
RWAs (based on column 4 in Table A-1.1). 
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group are listed on the IUCN Red List of Threatened species (IUCN 2013) and are 

protected in most European countries. Initially, the awareness of the role of RWAs in 

controlling pest insects stimulated conservationists (Gösswald 1989b). Later their 

importance for nutrient soil cycles and their complex social organization has 

encouraged conservation measures. However, the importance of their nests for 

myrmecophiles and other associated species has often been overlooked. Population 

sizes and prevalences of myrmecophiles decrease when RWA mounds become more 

isolated (Päivinen et al. 2004, Härkönen and Sorvari 2014, chapter 2). It can be 

expected that myrmecophiles strictly bound to RWAs are affected the most by the 

deterioration of population densities of their host. However, myrmecophiles that also 

occur with other ant hosts likely suffer from a decline in wood ant nests as well. For 

those species, the rich organic, thermoregulated and stable mounds are likely source 

habitats in which they can attain high population densities (unpub. data). Dispersal 

from those patches to surrounding nests of other ant hosts, which are often of lower 

quality and short-lived, can be vital in the population dynamics of those species. RWAs 

can thus be considered as typical flagship species and their protection should be 

primordial to conserve a highly diverse group of associated species.  
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APPENDIX CHAPTER 1 

Appendix 1-1. Red wood ant associates 
Table A-1.1. Myrmecophiles associated with RWAs (F. rufa group). Host ant: * indicates primary host of myrmecophile are RWAs (as mentioned in at least one reference in right column or when the myrmecophile 
have hitherto only been found with RWAs). RWA species are underlined, primary host in bold when known. Abbreviations and taxonomy of host ant see table 3. Host ant: all known host ants reported in references 
on the right. Taxonomic relation: based on list of host ants. Biology: I = inside nest, E = outside nest, A = alternating life cycle with larval stage inside mound, and adult stage extranidal, D = different summer and 
winter host, P = larva parasitic inside ant worker or ant larva. Names of species of the F. rufa group correspond to the original species name given in the reference.  

 
  Host ant Taxonomic 

relation host ants   
Biology References 

  
ACARI 

      

�MESOSTIGMATA       
Androlaelaps myrmecophila (Evans and Till, 
1966)  

* Fprat Frufa Frufa  F. rufa group I  10 , 31, 40 

Hypoaspis cuneifer Michael 1891  Caeth Cherc Clign Fcuni Fexse Ffusc Frufa Frufib Fsang 
Lalie Lbrun Lflav Lfuli Lmixt Lumbr Mscab Ppall Sfuga Terra 

Formicidae I  1, 2, 4, 5, 6, 10 , 18, 32 

Hypoaspis montana Berlese, 1904  Ffusc Frufa Lnige Myrmica Formicidae I  5, 10 , 40 
Hypoaspis myrmecophila (Berlese, 1892)  Aphaenogaster Clign Fcuni Frufa Frufib Fsang Lflav Lnige 

MSbarb Mlaev Mrubr Mrugi Mscab Messor 
Formicidae I  1, 2, 4, 5, 6, 10, 18  

Hypoaspis neocuneifer (Evans and Till, 1966) * Frufa 
 

F. rufa group I  10, 40 

Hypoaspis oophila (Wasmann 1897)  Fcuni Ffusc Fpoly Fprat Frufa Frufib Fsang  Formica I lives on the eggs 1, 2, 4, 5, 10 , 18, 40, 45 
Laelaps laevis Michael, 1891  Fprat Frufib Fsang Mbarb Tcaes  Formicidae I  4, 5, 32 
Myrmozercon acuminatus Berlese, 1903  Frufa MScapi Formicidae I  5, 32 

RHODACARIDAE       

Punctodendrolaelaps formicarius Hugta and 
Karg, 2010 

* Frufa s.l. F. rufa group I  31 

TRACHYTIDAE       
Uroseius myrmecophilus Wisniewski 1979 * Fpoly F. rufa group I  32 

TRACHYUROPODIDAE       
Urojanetia coccinea (Michael, 1891)  Fexse Ffusc Fpoly Frufa Frufib Fsang Lnige Lflav Mrubr 

Mscab 
Formicidae I  4, 5, 17, 32 

Urojanetia coccinea var. sinuate   Atest Caeth Ffusc Frufa Frufib Fsang Lflav Lnige Mscab Formicidae I  5 , 32 
URODINYCHIDAE       

Urodinychus janeti Berlese, 1904 ? Ffusc Frufa  Formica I  5 
UROPODIDAE       

Oodinychus ovalis (C.L. Koch, 1839)  Camponotus Formica Lasius Formicinae I  17 
Oplitis pandata (Michael, 1894) ssp. n. “A” ? Fexse Frufa  Formicamound I  17 
Trematurella elegans (Berlese, 1916) ? Fpoly Lnige Formicinae I  17 
Urodiscella ricasoliana (Berlese, 1889)  Clign Frufa Lfuli Lumbr Formicinae I  5, 6 
Uroseius koehleri Wisniewski, 1979 * Frufa F. rufa group I  17 

� SARCOPTIFORMES       
ACARIDAE
  

      

Forcellinia wasmanni (Monniez, 1892)  Ffusc Frufa Fsang Lalie Lfuli Lnige Mrugi Tcaes Formicidae I  6 
Tyrophagus formicetorum Volgin, 1948 * Frufa F. rufa group I  16 

� TROMBIDIFORMES       
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NANORCHESTIDAE       
Speleorchestes formicorum Trägårdh, 1909 * Frufa F. rufa group I  5 

PYGMEPHORIDAE       
Petalomium sawtschuki (Sevastianov, 1967) * Frufa F. rufa group I  13 
Pygmephorus samsinaki Mahunka, 1967 * Frufa F. rufa group I  12 
Siteroptes bohemicus Mahunka, 1967 * Frufa F. rufa group I  12 

SCUTACARIDAE       
Disparipes nudus Berlese, 1886 ? Lfuli Frufa Formicinae I  1 
Imparipes atypicus Karafiat, 1959 ? Frufa Mrugi  Formicidae I phoretic 9, 15 
Imparipes pennatus Karafiat, 1959 ? Frufa Terra  Formicidae I phoretic 9  
Scutacarus rotundatus (Berlese, 1903) ? Frufa Lnige Formicinae I  6 

       
ARANEA        

AGELENIDAE       
Mastigusa arietina (Thorell, 1871)  Ffusc Fpoly Frufa Lfuli Lbrun Lumbr Formicinae I  1, 5 , 44, 45 

CORINNIDAE       
Phrurolithus festivus (C.L.Koch, 1835)  Ffusc Frufa Fsang Lbrun Lflav Lfuli Lnige Formicinae  mimicry 1, 5 

GNAPHOSIDAE       
Micaria fulgens (Walckenaer, 1802) ? Frufa F. rufa group  mimicry 2 

LINYPHIIDAE       
Acartauchenius scurrilis (O.P.-Cambridge, 1872)  Tcaes Frufa Lflav Formicidae I  1, 2, 5, 45 
Thyreosthenius biovatus (O. P.-Cambridge, 
1875) 

* Ffusc Flugu Fpoly Fprat Frufa Formica I  1, 2, 5 , 19, 40, 41, 44, 45 

SALTICIDAE       
Myrmarachne formicaria (de Geer 1778)  Mrubr Mscab Fcuni Frufa Frufib  Formicidae E mimicry 5 

THERIDIIDAE       
Dipoena torva (Thorell, 1875)  * Faquil Fpoly  F. rufa group E myrmecophagous 20, 33 
Dipoena tristis (Hahn, 1833)  Ffusc Frufa Fsang Frufib Formica E myrmecophagous 3 

       
COLLEMBOLA        

Cyphoderus albinus Nicolet, 1842  Panmyrmecophilous Formicidae I loss of pigment, blind 1, 5 ,26, 40, 41, 45 
       

ISOPODA        

Platyarthrus hoffmannseggii Brandt, 1833  panmyrmecophilous  Formicidae I loss of pigment, blind 1, 5, 7, 26, 40, 41, 45 

       
ZYGENTOMA       

Atelura formicaria Heyden, 1855  Panmyrmecophilous Formicidae I loss of pigment, blind 
trophallaxis 

1, 2, 18, 45 

       
COLEOPTERA       

CETONIIDAE       
Protaetia (Potosia) metallica (Herbst, 1782) * Fpoly Fprat Frufa Fural Fsang Lfuli Formicinae A larva though skin 1,5,24, 38, 41, 45 

COCCINELLIDAE       
Coccinella magnifica Redtenbacher, 1843 * Flugu Fpoly Fprat Frufa F. rufa group E feeds on aphids colonies 

tended by rwas / trail following 
/ ducking down 

5, 19, 41, 45 

CHRYSOMELIDAE       
Clytra laeviuscula Ratzeburg, 1837  Asubt Frufa Fsang Lalie Lnige Formicidae A larva in case 1, 5, 39 
Clytra quadripunctata (Linnaeus, 1758) * Clign Faqui Fexse Ffusc Flugu Frufa F.prat Fsang Fgaga  Formicidae A larva in case 1, 5, 19, 24, 39, 41, 45  

CRYPTOPHAGIDAE       
Emphylus glaber (Gyllenhal, 1808) * Faqui Fpoly Frufa Fural Formicamound I  1, 3, 24, 44 
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Hypocoprus latridioides Motschulsky, 1839  Fexse Flugu Fobsc Frufa  Formicamound I  1, 39  
HISTERIDAE       

Abraeus perpusillus (Marsham, 1802)  Lfuli Lbrun Frufa Formicinae I  24 
Dendrophilus pygmaeus (Linnaeus, 1758) * Faqui Fexse Flugu Fpoly Fprat FrufaLfuli  Formicinae I death feigning 1, 5, 14, 19, 21, 24,39, 41, 44, 

45 
Hetaerius ferrugineus (Olivier, 1789)  Formica Fcine Fexse Ffusc Fprat Frufa Frufib Fsang Lasius 

Lflav Lfuli Lnige Leptothorax Lacer Myrmica Mscab Prufe 
Terra 

Formicidae I glandular adaptations 
trophallaxis 

1, 2, 3, 14, 21, 24, 39, 41 

Myrmetes paykulli Kanaar, 1979 * Faqui Flugu Fpoly Fprat Frufa Lasius sp. Formicinae I death feigning 1, 2, 5, 14, 19, 21, 24, 41, 45 
LATRIDIIDAE       

Corticaria longicollis (Zetterstedt, 1838) * Faqui Fexse Flugu Fpoly Fprat Frufa Lnige Tcaes Formicidae I  24, 34, 39, 44 
Corticaria inconspicua Wollaston, 1860 * Fprat Frufa F. rufa group I  24 

MONOTOMIDAE        
Monotoma angusticollis (Gyllenhal, 1827) * Faqui Fexse Flugu Fprat Fpoly Frufa Formicamound  I death feigning 1, 5, 19, 24, 40, 41,44, 45 

Monotoma conicicollis Aubé, 1837 * Faqui Fexse Flugu Fpoly Fprat Frufa Fural  Formicamound I death feigning 1, 5, 19, 21, 24, 39, 40, 41, 44, 
45 

 
PTILIIDAE  

      

 Ptilium myrmecophilum (Allibert, 1844) * Faqui Flugu Frufa Fprat Fsang Ftrun Lasius  Formicinae I  1, 5 , 24, 39, 40, 41  
Ptenidium formicetorum Kraatz, 1851 * Faqui Fexse Fpoly Frufa Fprat Lbrun Lfuli  Formicinae I  1, 5, 24, 41, 44 

STAPHYLINIDAE       
ALEOCHARINAE       
Amidobia talpa (Heer, 1841) * Faqui Fexse Flugu Fpoly Fprat Frufa Ftrun Lfuli Formicinae I  5, 19, 24, 29, 40, 44, 45 
Atheta confusa (Märkel, 1844)  Frufa Lfuli Formicinae I  24 
Dinarda dentata (Gravenhorst, 1806)  Faqui Fcine Fexse Ffusc Fpoly Frufib Fsang Formica I trophallaxis 

brood parasite 
24, 29 

Dinarda hagensii Wasmann, 1889  Fexse Fprat Formicamound I trophallaxis 
brood parasite 

24, 37, 39 

Dinarda maerkelii Kiesenwetter, 1843 * Flugu Fpoly Fprat Frufa Fsang Ftrun 
 

Formica I trophallaxis 
brood parasite 

1, 2, 5, 19, 24, 37, 39, 45 

Euryusa optabilis Heer, 1839  Frufa Lbrun Lnige Lfuli  Formicinae I  24 
Lomechusa emarginata (Paykull, 1789)  Fcine Ffusc Frufa Fsang Lasius Mrubr Mrugi Mrugu Mscab 

Msabu Msulc 
Formicidae D glandular adaptations 

trophallaxis 
brood parasite 

5, 24, 37 

Lomechusa pubicollis Brisout de Barneville, 
1860 

* Ffusc Fpoly Fprat Frufa Frufib Ftrun Lfuli Lalie Lflav Lnige 
Lumbr Mrubr Mrugi Msulc Tcaes 

Formicidae D glandular adaptations 
trophallaxis 
brood parasite 

1, 4, 5, 11, 24, 41 

Lomechusoides inflatus (Zetterstedt, 1828) ? Fexse Fgaga Fprat Frufa Fural Formica I glandular adaptations 
trophallaxis 
brood parasite 

24, 25 

Lomechusoides sibiricus Motschulsky, 1844  Frufa Fsang Formica I glandular adaptations 
trophallaxis 
brood parasite 

25 

Lomechusoides strumosus (Fabricius, 1792)  Fprat Frufa Fsang  Formica I glandular adaptations 
trophallaxis 
brood parasite 

1,24 

Lomechusoides welleni (Palm, 1949) ? Flugu Frufa Fural Formicamound I glandular adaptations 
trophallaxis 
brood parasite 

24 

Lyprocorrhe anceps (Erichson, 1837) * Faqui Fexse Flugu Fnigr Fpoly Fprat Frufa Ftrun Lfuli Formicinae I  1, 5, 19, 24, 37, 39, 40, 41, 44, 
45 
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Notothecta confusa (Märkel, 1844)  Frufa Lfuli Formicinae I  24 
Notothecta flavipes (Gravenhorst, 1806) * Faqui Fexse Flugu Fpoly Fprat Frufa Fsang Ftrun Lflav  Formicinae I  1, 5, 19, 24, 29, 37, 39, 40, 41, 

44, 45 
Oxypoda formiceticola Märkel, 1841 * Faqui Fexse Ffusc Flugu Fpoly Frufa Lasius  Formicinae I  24, 37, 39, 40, 41, 44 
Oxypoda pratensicola Lohse, 1970 * Fexse Fprat  Formicamound I  24, 37 , 39 
Oxypoda recondita Kraatz, 1856  Frufa Fsang Lbrun Formicinae I  5  
Oxypoda rugicollis Kraatz, 1856  Fexse Fprat Fpres Frufa Lasius Formicinae I  24, 37, 39 
Oxypoda vittata Märkel, 1842  Frufa Lbrun Lfuli  Formicinae I  24, 29, 45 
Thiasophila angulata (Erichson, 1837) * Faqui Fexse Flugu Fpoly Fprat Frufa Fsang Ftrun Fural 

Lbrun Lfuli 
 

Formicinae I  1, 5, 24, 29, 37, 40, 41, 44, 45 

Thiasophila canaliculata Mulsant and Rey, 1875  Fexse Frufa Formicamound I  1, 24, 37, 39 
Thiasophila inquilina Märkel, 1844  Lfuli Frufa Fprat Formicinae I  5, 24 
Thiasophila lohsei Zerche, 1987 * Fprat F. rufa group I  14, 24, 37 , 39 
Zyras (Zyras) haworthi (Stephens, 1832)  Asubt Clign Frufa Lfuli Formicidae I  5 
Zyras (Pella) humeralis (Gravenhorst, 1802)  Faqui Fpoly Fprat Frufa Lbrun Lfuli Lumbr Formicinae I winter association 1, 5, 24, 29, 39, 45 
PSELAPHINAE       
Batrisodes venustus (Reichenbach, 1816)  Clign Ffusc Fpoly Frufa Ftrun Mscab Lbico Lbrun Lfuli Lnige  Formicidae I  1, 5, 24, 29 
SCYDMAENINAE       
Euconnus claviger (P.W.J.Müller and Kunze, 
1822) 

 Clign Ffusc Frufa Fsang Lbrun Lfuli Lnige “rufagroup”  Formicinae I  14, 21, 22, 42  

Euconnus maeklinii (Mannerheim, 1844b)  Fpoly Frufa Lbrun Lfuli Lnige “rufagroup” Lasius Formicinae I  1, 14, 22, 24, 42, 44 
Euconnus pragensis Machulka, 1923   Clign Fcine Frufa Lbrun Lnige Lfuli Lasius  Formicinae I  14, 21, 22, 24, 42 
STAPHYLININAE       
Quedius brevis Erichson, 1840  Faqui Fexse Flugu Fpoly Frufa Fsang Lbrun Lfuli  Formicinae I death feigning 1 , 5, 19, 24, 37, 40 , 39, 41, 

45 
STENINAE       
Stenus aterrimus Erichson, 1839 * Fpoly Fprat Frufa Ftrun Formica s. str. I  1, 2, 24, 29, 37, 39, 41, 45 
TACHYPORINAE       
Lamprinodes saginatus (Gravenhorst, 1806)  Acanthomyops Fexse Ffusc Fpoly Frufa Fsang Lflav Lfuli 

Msabu Mrubr Mrugi Mscab Ponera 
Formicidae I  1, 5, 24, 41, 45 

XANTHOLININAE       
Gyrohypnus atratus (Heer, 1839) * Faqui Flugu Fpoly Fprat Frufa Lfuli Mrubr Formicidae I  1, 5, 19, 24, 29, 40, 41, 44 
Leptacinus formicetorum Märkel, 1841 * Faqui Fexse Flugu Fpoly Fprat Frufa Frufib Fural Lbrun  Formicinae I  1, 5, 19, 24, 37, 39, 40, 41, 44, 

45 
TENEBRIONIDAE       

Myrmechixenus subterraneus Chevrolat, 1835 * Faqui Fcine Fexse Ffusca Flugu Fprat Fpres Fpoly Frufa 
Ftrun Lnige Lfuli 

Formicinae I  1, 14, 19, 24, 39, 41, 44 

       
DIPTERA       

CHIRONOMIDAE       
Forcipomyia myrmecophila (Egger, 1863) ? Fexse Frufa Formicamound A  5, 19, 41 

MILICHIIDAE       
Phyllomyza formicae Schmitz, 1923 

MYTHICOMYIIDAE 
Glabellula arctica (Zetterstedt, 1838) 

* 
 
? 

Flugu Frufa Fprat 
 
Faqui Fexse Fpoly Fprat 

F. rufa group 
 
Formicamound 

A 
 
A 

 
 
 

5, 19 
 
14b, 44 

SCATOPSIDAE       
Colobostema infumatum (Haliday, 1833)   Lfuli Frufa Formicinae   5 
Colobostema nigripenne (Meigen, 1830)  Myrmica RWA Formicidae ?  19, 43 
Holoplagia transversalis (Loew, 1846)  Lfuli Frufa Formicinae A  5 
Scatopse leucopeza Meigen, 1818  Frufa Lbrun Lfuli Formicinae ?  1 

SYRPHIDAE       
Microdon mutabilis (Linnaeus, 1758)  Ffusc Flema Frufa Frufib Lnige Lbrun Lflav Formicinae A brood parasite 1, 2, 5, 35 
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Microdon devius (Linnaeus, 1761)  Ffusc Frufa Fsang Lflav Lfuli Formicinae A brood parasite 1, 5 
Microdon analis (Macquart, 1842)   Fexse Ffusc Flema Frufa Fsang Lfuli Formicinae A brood parasite 30 

       
HEMIPTERA       

ALYDIDAE       
Alydus calcaratus (Linnaeus, 1758)  Ffusc Fprat Frufa Frufib Fsang Lflav Lnige Myrmica Mrubr  Formicidae E mimicry 1, 2, 5, 28 

ANTHOCORIDAE       
Xylocoris formicetorum (Boheman, 1844) * Fexse Ffusc Flugu Fpoly Fprat Frufa Fsang Ftrun Lflav Formicidae I  2, 19, 23b, 28, 41, 44 

LYGAEIDAE       
Notochilus limbatus Fieber, 1870  Frufa Myrmica  Formicidae I  1, 28 
Eremocoris abietis (Linnaeus, 1758) * Frufa Camponotus Formicinae E  1, 28, 41 

MIRIDAE       
Myrmecoris gracilis (R.F. Sahlberg, 1848)   Ffusc Frufa Lnige Formicinae E mimicry 1, 5, 28 
Pilophorus cinnamopterus (Kirschbaum, 1856) * Fprat Frufa F. rufa group E mimicry 1, 5, 28 
Pilophorus perplexus Douglas and Scott, 1875   Ffusc Frufa Fsang Lbrun Lemar Lfuli Lnige  Formicinae E mimicry 5, 28, 43 

       
HYMENOPTERA       

BRACONIDAE       
Elasmosoma berolinense Ruthe, 1858  Camponotus Cvagus Ffusc Fjapo Fprat Frufa Fsang 

Formica Lnige Polyergus 
Formicinae P ant parasite 1, 3, 5, 36 

Fachylomma [Eurijpterna) creinierl  Lfuli Frufa Formicinae ?  3 
Neoneurus auctus (Thomson, 1895) * Frufa Fprat F. rufa group P ant parasite 36 
Neoneurus clypeatus (Förster, 1862) * Frufa F. rufa group P ant parasite 36 
Kollasmosoma marikovskii (Tobias, 1986) * Fprat F. rufa group P ant parasite 36 

DIAPRIIDAE       
Trichopria fuliginosa (Wasmann, 1899)  Frufa Lfuli Formicinae I  5 

EUCHARITIDAE       
Chalcura sp. * Frufa F. rufa group P ant parasite 1, 5, 36 
Eucharis bedeli (Cameron, 1891)  Cataglyphis Fjapo Frufa Formicinae P ant parasite 36 
Eucharis adscendens (Fabricius, 1787)  F rufa Fcuni Messor Formicidae P ant parasite 36 

FORMICIDAE       
Formicoxenus nitidulus (Nylander, 1846) * Faqui Fexse Flugu Fpoly Fprat Fpres Frufa Fsang Ftrun 

Fural 
Formicamound I xenobiosis with chemical 

deterrent strategy 
1, 2, 5, 27, 41, 44, 45 

Solenopsis fugax (Latreille, 1798)  Fcine Fcuni Ffusc Fprat Frufa Frufib Fsang Lflav Lmixt 
Lnige Mscab Prufe Tcaes 

Formicidae I lestobiosis 2, 5 

ICHNEUMONIDAE       
Hybrizon buccatus (de Brébisson, 1825)  Formica Fprat Frufa Lasius Myrmica Tapinoma Formicidae P ant parasite 5, 36 
Eurypterna cremieri (Romand,1838)  Frufa Lasius Formicinae P ant parasite 36 

MEGASPILIDAE       
Conostigmus inquilinus (Erichson, 1844) * Frufa F. rufa group ?  1 
Conostigmus formiceti (Erichson, 1844) * Frufa F. rufa group I  1, 5 

       
LEPIDOPTERA       

TINEIDAE       
Myrmecozela ochraceella (Tengström, 1848) * Flugu Fprat Frufa  F. rufa group A larva in case 1, 5 

       
ORTHOPTERA       

MYRMECOPHILIDAE       
Myrmecophilus acervorum (Panzer, 1799)  Panmyrmecophilous Formicidae I trophallaxis 1, 2, 8, 23 
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Table A-1.2 . Taxonomic classification of RWA and ants listed in Table A-1.1 and Table A-1.3. 

 
Dolichoderinae  

    

Tapinoma Förster, 1850     
     
Formicinae      
Camponotus Mayr, 1861 C. aethiops (Latreille, 1798) Caeth   
 C. herculeanus Linnaeus, 1758 Cherc   
 C. ligniperda Latreille, 1802 Clign   
Formica Linnaeus, 1758     
 F. uralensis Ruzsky, 1895 Fural  mound building 
Formica s.str. F. aquilonia Yarrow, 1955 Faqui F.rufa group mound building 
 F. lugubris Zetterstedt, 1839 Flugu F.rufa group mound building 
 F. polyctena Förster, 1850 Fpoly F.rufa group mound building 
 F. pratensis Retzius, 1783 Fprat F.rufa group mound building 
 F. paralugubris Seifert, 1996 Fpara F.rufa group mound building 
 F. rufa Linnaeus, 1761 Frufa F.rufa group mound building 
 F. dusmeti Emery, 1909   mound building 
 F. frontalis Santschi, 1919   mound building 
 F. obscuripes Forel, 1886 Fobsc F. rufa group (North-America) mound building 
 F. truncorum Fabricius, 1804 Ftrun  mound building 
Coptoformica F.exsecta Nylander, 1846 Fexse  mound building 
 F. pressilabris Nylander, 1846 Fpres  mound building 
 F. suecica Adlerz, 1902 Fsuec  mound building 
Raptiformica F. sanguinea Latreille, 1798 Fsang   
Serviformica F. cinerea Mayr, 1853 Fcine   
 F. cunicularia Latreille, 1798 Fcuni   
 F. fusca Linnaeus, 1758 Ffusc   
 F. gagates Latreille, 1798 Fgaga   
 F. lemani Bondroit, 1917 Flema   
 F. japonica Motschoulsky, 1866 Fjapo   
 F. rufibarbis Fabricius, 1793 Frufib   
Lasius Fabricius, 1804 L. alienus (Förster, 1850) Lalie   
 L.brunneus (Latreille, 1798) Lbrun   
 L. emarginatus (Olivier, 1792) Lemar   
 L. flavus (Fabricius, 1782) Lflav   
 L. fuliginosus (Latreille, 1798) Lfuli   
 L. mixtus (Nylander, 1846) Lmixt   
 L. niger (Linnaeus, 1758) Lnige   
 L. umbratus (Nylander, 1846) Lumbr   
Polyergus Latreille, 1804 P. rufescens (Latreille, 1798) Prufe   
     
Myrmicinae      
Aphaenogaster Mayr, 1853 A. subterranea (Latreille, 1798) Asubt   
 A. testaceopilosa (Lucas, 1849) Atest   
Leptothorax Mayr, 1855 L. acervorum (Fabricius, 1793) Lacer   
Messor Forel, 1890 M. barbarus (Linnaeus, 1767) MSbarb   
 M. capitatus (Latreille, 1798) MScapi   
Myrmica Latreille, 1804 M. rubra (Linnaeus, 1758) Mrubr   
 M. ruginodis Nylander, 1846 Mrugi   
 M. rugulosa Nylander, 1842 Mrugu   
 M. sabuleti Meinert, 1861 Msabu   
 M. scabrinodis Nylander, 1846 Mscab   
 M. sulcinodis Nylander, 1846 Msulc   
Pheidole P. pallidula Westwood, 1840, Ppall   
Solenopsis S. fugax Latreille, 1798 Sfuga   
Tetramorium Mayr, 1855 T. caespitum (Linnaeus, 1758) Tcaes  

 
 
 

 

Table A-1.3 . Myrmecophiles associated with other mound building Eurasian wood ants and not recorded with RWAs. 

Myrmecophile  Host ant 
Taxonomic relation 
host ants 

 
 

 
 
References 

       
Thiasophila bercionis Bernhauer, 1926 
Zyras cognatus (Märkel, 1842) 

 Fexse Fural Formicamound   (Päivinen et al. 2002) 
 Ffusc Fexse Lbrun Lnige Lfuli Formicinae   (Päivinen et al. 2002) 

Zyras limbatus (Paykull, 1789)  Ffusc Fsang Fexse Lfuli Lflav Lbrun 
Lnige Mrubr Mscab 

Formicidae   (Päivinen et al. 2002) 

Rhyncholophus phalangloides Moniez 1894  Fexse Coptoformica   (Uppstrom 2010) 
Micaria pulicaria (Sundevall, 1831)  Fcuni Fexse Ffusc Fsang Lfuli Lnige 

Lumbr Tcaes  
Formicidae   (Donisthorpe 1927) 
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ABSTRACT  

 
 
Red wood ants (RWAs) support a diverse community of myrmecophiles in their nest 

mounds. Given that nest mounds provide fairly constant and distinct habitat patches 

for myrmecophiles, metapopulation and metacommunity dynamics can be expected to 

play an important role in structuring myrmecophile communities. Here, we investigate 

how site, site size (i.e. number of mounds per site), mound isolation, mound size, 

moisture, pH and RWA host (Formica rufa and Formica polyctena) affect the 

(meta)community composition and species richness. We demonstrate that community 

composition is structured by site and within-site isolation. In addition, species richness 

per unit volume is negatively correlated with increasing nest mound isolation. Mound 

size and site size at a higher spatial scale had no effect on community composition or 

diversity. The latter suggests that few mounds are required to support the minimum 

viable metapopulation size. We did not find support that the environmental variables 

mound moisture and pH affect the myrmecophile community or its species richness. 

Finally, the communities of the two closely related wood ant species F. rufa and F. 

polyctena were very similar. Overall, our results demonstrate, in accordance with 

metapopulation theory, that isolated mounds support fewer myrmecophile species. 

Diverse myrmecophile metacommunities also occur in small RWA sites, with well 

connected nest mounds. We discuss the powerful potential of ant nests, and 

particularly RWA mounds, for metapopulation and metacommunity research. 
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INTRODUCTION 

A diverse group of arthropods is strictly associated with ants (Hölldobler and Wilson 

1990). They benefit from the resources provided by their host and the homeostatic nest 

conditions. Myrmecophiles are confined to ant nests, but differ in degree of host 

specificity. While some species are restricted to one ant species or narrowly related 

species, others occur with different ant taxa and few even show no preference at all 

(Hölldobler and Wilson 1990). Myrmecophiles live thus in small, spatially distinct and 

stable patches (= ant nests of associated host ant taxa) susceptible to colonization 

surrounded by a large landscape matrix unsuitable for colonization. Hence, the 

populations of myrmecophiles can be expected to be organized as metapopulations 

(sensu Hanski and Gilpin 1991) wherein local dynamics in the ant nest interact with 

dispersal among the ant nest patches. When multiple myrmecophile species live in the 

same set of distinct ant nests, their community can be described as a community of 

metapopulations or a metacommunity (Hanski and Gilpin 1991). Metapopulation theory 

has proven to be a successful concept to study fragmented populations connected 

through dispersal. A key prediction of metapopulation theory is that populations in small 

and isolated patches are more likely to get extinct because of smaller carrying 

capacities and smaller odds to get rescued by new colonisations. Consequently, those 

patches support fewer species at the metacommunity level. Local environmental 

characteristics of the patch have been demonstrated as a third factor to affect patch 

occupation probability in metapopulations (Ranius 2000, Thomas et al. 2001, Jeffries 

2005, Chisholm et al. 2011).  

Because of their hidden life style, the distribution and abundance of myrmecophiles 

are unclear and likely underestimated. In this study, we investigate which 

(metapopulation) processes structure myrmecophiles associated with European red 

wood ants (RWAs) (Formica rufa group). RWAs are dominant and aggressive 

arthropod predators in European woodlands (Skinner 1980, Laakso and Setälä 2000, 

Hawes et al. 2002). Still, many arthropods managed to evade ant aggression and live 

successfully in or around their nest mounds in one of the largest associations of 

arthropods including Coleoptera, Hymenoptera, Diptera, Lepidoptera, Heteroptera, 

Isopoda, Collembola, Acari and Araneae (chapter 1: Parmentier et al. 2014).  

Two RWA species, Formica rufa and Formica polyctena, co-occur in western Flanders, 

Belgium (Dekoninck et al. 2010). Their populations are isolated units due to forest 

fragmentation. They vary considerably in size, but the majority of the populations is 

relatively small. Nest mounds differ in local ecological characteristics, size and relative 
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position to other mounds of the site. Nests persist likely by budding or by accepting 

related new queens (pers. observations TP). Those distinct and small RWA sites are 

thus ideal subjects to test factors classically structuring the dynamics and affecting the 

composition and richness of metapopulations and metacommunities. 

Studies in large forest complexes in Finland by Päivinen et al. (2004) and Härkönen 

and Sorvari (2014) demonstrated that isolation of mounds of the RWAs F. aquilonia 

and F. polyctena negatively affected the diversity of myrmecophiles. Lower beetle 

diversity was also demonstrated in smaller mounds (Päivinen et al. 2004). These 

findings agree thus with metapopulation theory. Yet, it is not understood whether the 

same processes structure myrmecophile metacommunities in highly fragmented and 

impoverished, small, RWA sites. Moreover, it remains unknown whether local patch 

(i.e. mound) characteristics and factors at a larger spatial scale affect myrmecophile 

metacommunities. Therefore, we want to test in-depth potential factors structuring the 

myrmecophile metacommunity in fragmented RWA sites. More specifically, we assess 

the effect of site, isolation and multiple mound characteristics (size, pH, moisture, host 

ant) on: a) myrmecophile metacommunity composition and b) myrmecophile species 

richness. 

 

MATERIAL AND METHODS 

Study area 

 
Figure 2.1. Overview of red wood ant sites (1 = De Haan, 2 = Roksem,3 = Beisbroek, 4 = Aartrijke, 5 = Beernem, 
6 = Vladslo, 7 = West-Vleteren) in West Flanders, the westernmost province of Belgium.Unsampled red wood ant 
sites in West Flanders and nearby regionsare indicated by inverted open triangles. The mapped sites compriseall 
red wood ant mounds in this area. Forest fragments indicated in green. Detailed maps per site see Appendix 2-1. 
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The study area is situated in northwest Belgium (province: Western Flanders) (Fig. 

2.1). This is a highly urbanized region with only few fragmented woodland patches 

remaining. Two RWA species, Formica rufa Linnaeus, 1761 and Formica polyctena 

Förster, 1850 persist in those isolated and small forests (Dekoninck et al. 2003). The 

two ant species are closely related and are even known to hybridize (Seifert et al. 

2010). They can be distinguished based on degree of pilosity. Moreover they tend to 

have different ecological preferences (Seifert 2007). Formica rufa usually forms 

monodomous (one mound per colony) and monogynous (one queen) colonies along 

forest edges, while most F. polyctena colonies are polydomous (multiple mounds in a 

colony) and polygynous (multiple queens in a mound) typically established in inner 

forests (Seifert 2007). However, in the study area these differences are less clear-cut 

with F. rufa often forming strong polygynous and polydomous colonies and with F. 

polyctena mounds regularly lining forest edges (pers. observations TP, Dekoninck et 

al. 2010). Nevertheless, the two species can unambiguously be separated based on 

their pilosity and no hybrids occur in the study area. 

We surveyed 83 mounds (29 F. rufa, 54 F. polyctena) in seven RWA sites and recorded 

the presence of myrmecophiles (Fig. 2.1) (detailed maps per site in Appendix 2-1). 

Two sites (West-Vleteren, Vladslo) support Formica rufa, three Formica polyctena 

(Beernem, Roksem, Aartrijke) and in the two remaining sites (De Haan and Beisbroek) 

both species occur sympatrically. We use the word “site” to describe a population of F. 

rufa and/or F. polyctena in a particular forest complex. 

The distribution of the RWA mounds in the study area was already well recorded during 

previous studies (Loones et al. 2008, Dekoninck et al. 2010, Parmentier 2010) 

Additionally, the woodlands were intensively scanned prior to sampling to record new, 

moved or disappeared nests. Therefore we were able to map all nest mounds of the 

seven sites. 

Inventory of myrmecophiles and nest mound variables  

During the summer of 2012 and 2013, we collected all myrmecophiles in a 2-L nest 

sample by successively inspecting small portions of that sample spread out in a large 

white tray. Afterwards, nest material, ants and their brood were gently put back into the 

nest to minimize disturbance. The 2-L samples were taken from the central core of the 

83 mounds. Beetles were identified following Freude et al. (1964, 1974), spiders 

following Roberts (2001). We identified 13 beetle species (including 8 rove beetles), 

two spiders, one springtail and one isopod.  
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For each mound we recorded the following variables: host species, site size, mound 

size, isolation, moisture and pH. The host ant species was either F. rufa or F. 

polyctena. The seven RWA sites were assigned to two size classes based on total 

number of RWA mounds (small: < 15 mounds, large: 25-48 mounds). There was a 

large variation in mound height (and mound depth) corresponding rather with sun 

exposure than with colony size. Therefore we used nest surface (ellipse: πab /4 with 

a, b the largest and smallest diameter of the mound) following Liautard et al. (2003) 

who demonstrated that this is a good measure for mound size and productivity in 

mound building ants. Dispersal distance and frequency is species specific and isolation 

for several species in one study system is consequently difficult to quantify with one 

parameter (Kindlmann and Burel 2008). Therefore mound isolation was estimated as 

the sum of the surface areas of other nest mounds within a 100-m radius (S100) of the 

focal nest mound or by the nearest neighbor distance (dmin). An additional nest 

sampling of the central core was done to measure environmental variables. These 

samples (ca. 10 g) were collected after three consecutive dry days during the summer 

and brought to the lab. PH was recorded (Lutron sensor PH-223) on 1:5 soil 

suspensions. Additionally soil samples were dried overnight at 60 °C in an oven 

(Memmert) to quantify moisture content gravimetrically. 

The possible host ant species of the observed myrmecophiles are listed in Table 2.1. 

The main secondary hosts are Lasius fuliginosus, Formica sanguinea, Lasius 

brunneus and Formica fusca. F. fusca was observed interspersed among the RWA 

sites of De Haan, Beisbroek and Roksem but in very low densities. F. sanguinea was 

only recorded at the edge of the site in Beisbroek and L. fuliginosus at the edge of 

Beisbroek and De Haan. Those nests were located farther than 100 m from the nearest 

RWA mound. L. brunneus was not observed near the RWA sites. Therefore we 

assume that the used isolation proxies calculated from only RWA mounds are accurate 

estimations for most myrmecophiles. Exceptions are the “pan”myrmecophilous species 

Platyarthrus hoffmannseggii and Cyphoderus albinus which also thrive in ant nests of 

common species (belonging to the genera Lasius, Myrmica, Leptothorax and 

Tetramorium) found in all RWA sites.  

Data analyses 

Multivariate analysis 

In this analysis we were interested which factors structured the myrmecophile 

community as a whole and assessed their relative importance. Hence, we examined 

which variables could affect the species composition in a myrmecophile community. 
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We grouped the independent variables in three subsets: a) nest mound variables (= 

moisture, pH, nest size, ant species) b) within-site isolation variables (= S100 and dmin), 

and c) site variables (site size and site identity). For every category, we ran an RDA 

(Redundancy Analysis) with the presence-absence data of myrmecophile species as 

dependent community matrix. Then we selected a minimal number of significant 

variables by applying the foward.sel function in R package packfor for the three subsets 

of variables. Thereafter we applied variation partitioning following the methods of 

Peres-Neto et al. (2006) with the varpart function in the R package vegan. In this 

approach, the total variation (expressed in R²) explained by the model is partitioned 

into unique and shared fractions of the subsets of predictors. Adjusted R² values were 

calculated for each fraction and provide unbiased estimates of the variation explained 

by those fractions (Peres-Neto et al. 2006). The significances of the fractions were 

tested by a permutation test (n=1000) using the function anova. Significant variables 

were plotted on an unconstrained Principal Component Analysis (PCA) with the 

presence-absence data as community matrix. Dmin and mound size were ln 

transformed and S100 was square rooted. Continuous variables were centered and 

divided by their standard deviations.  

Univariate analysis 

In this analysis, we analysed the effect of multiple variables on the number of 

myrmecophile species found. Predictor variables (moisture, pH, mound size, ant 

species, isolation, site size and site) were regressed with (a) total species richness, (b) 

Staphylinidae species richness and (c) restricted myrmecophyle species richness (total 

species richness minus the panmyrmecophilous species C. albinus and P. 

hoffmannseggii), per 2 L volume fitting poisson generalized models with log link 

function. Goodness-of-fit tests based on likelihood ratio confirmed that models were 

Poisson error distributed. 

We used the dredge function (package MuMIn) to rank models based on AICc 

(corrected Akaike’s Information Criteria). The model with the lowest AICc was 

considered the model with the best support (‘best model’). Other models for which the 

AICc difference (∆ AICc) with the best model were ≤ 2, are argued to have substantial 

support as well and were selected with the best model (Burnham and Anderson 2002). 

We calculated Akaike weights (wi) for those models, which represent the relative 

probability (ranging from 0 to 1) that a model is the best among the subset of candidate 

models. We used a model-averaging approach to estimate averages, standard errors 

and confidence intervals of parameters for the selected set of models. Estimates were 
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weighted by the model’s Akaike Weight (Burnham and Anderson 2002). Confidence 

intervals of those model-averaged estimates excluding 0 are significant at the α = 0.05 

level (Nakagawa and Cuthill 2007). In addition, we tested significance of factors of the 

‘best’ models (lowest AICc) with Type II likelihood ratio tests using function Anova in R 

package car.  

Mound size was ln transformed and S100 was square rooted. Continuous variables 

were centered and divided by their standard deviations. Sites were nested within site 

size classes in our models. We used S100 (total nest surface of other mounds within a 

radius of 100 m) as proxy for isolation in these univariate analyses. The effect of 

isolation on species richness was similar when employing dmin (nearest distance to 

other mound) as isolation measure, but models had higher AICc-values. 

 

RESULTS 

Distribution 

Table 2.1 shows the mean abundances and proportions of nests occupied per species 

and indicates whether the myrmecophile was found with F. rufa, F. polyctena or both. 

Almost all myrmecophiles were observed with both host ant species. Exceptions were 

the spider Mastigusa arietina and the histerid beetle Dendrophilus pygmaeus, which 

both only occurred with F. polyctena. This is likely caused by the small number of 

individuals recorded (26 and 2, respectively). The most abundant species is the ant 

springtail Cyphoderus albinus, which occurred in more than 90% of the ant nests. This 

species can reach enormous abundances up to 1362 individuals per 2-L sample. The 

spider Thyreosthenius biovatus and the rove beetle Thiasophila angulata were also 

recorded in more than 50% of the sampled nests. The spider Thyreosthenius biovatus 

was only recorded three times in Belgium (pers. communication Dr. L. Baert). Yet, we 

found this spider in 80% of the mounds and in all sampled RWA sites. Table 2.2 gives 

an overview of the seven RWA sites: number of mounds, average species richness 

and number of RWA specific myrmecophiles (Stenus aterrimus, Dinarda maerkelii, 

Clytra quadripunctata, Monotoma angusticollis, Monotoma conicicollis, 

Thyreosthenius biovatus) in the study region. In the larger sites, more myrmecophile 

species were detected. This is a sampling effect (cf. number of sampled mounds), 

because average species richness per mound in small sites equals that of large sites. 

RWA specific myrmecophiles also occur in the smallest and highly isolated RWA sites 

(Fig. 2.1). On average, there was a comparable diversity of those RWA specifics in 

large and small sites (Table 2.2). 
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Table 2.1. List of observed species, total recorded individuals (N), mean number of individuals (Mean), proportion of occupied 
nests (%), maximum number of individuals found in a 2-L sample (Max). Host: myrmecophile associated with host Formica rufa 
(R) and/or Formica polyctena (P) in this study, Literature hosts: other host ant species occurring in the study area based on 
chapter 1: Parmentier et al. 2014, RWA = RWA species, Ffusc = Formica fusca, Fsang = Formica sanguinea, Lfuli = Lasius 
fuliginosus, Lbrun = Lasius brunneus, Lflav = Lasius flavus, L sp. = Lasius species). 

 

Table 2.2. RWA (RWA) site size (indicated by number of mounds), number of sampled mounds and total species richness and 
average species richness per mound of myrmecophiles and myrmecophiles specific to RWAs (Thyreosthenius biovatus, 
Monotoma angusticollis, Monotoma conicicollis, Clytra quadripunctata, Stenus aterrimus and Dinarda maerkelii).  

Site Total mounds 
Sampled 
mounds 

Total species 
Total species 
specific to 
RWAs 

Average 
species ± SE 

Average 
species specific 
to RWAs ± SE 

       
Beernem 49 20 16 5 5.30 ± 0.58  1.70 ± 0.30 
West-Vleteren 37 20 15 6 5.60 ± 0.49 2.65 ± 0.25 
Beisbroek 27 19 15 6 4.21 ± 0.38 2.05 ± 0.27 
De Haan 14 11 13 6 5.27 ± 0.39 2.36 ± 0.32 
Roksem 10 8 11 5 4.75 ± 0.61 2.25 ± 0.29 
Aartrijke 3 3 8 2 5.67 ± 0.27 2.00 ± 0.00 
Vladslo 2 2 10 5 6.50 ± 0.19 3.00 ± 0.71 

 

Multivariate analysis 

Forward selection of the mound characteristics subset retained the variables moisture, 

pH and host species. S100 and dmin of the within-site isolation subset were both 

selected. Site identity was selected, but site size was eliminated from the site subset. 

Fig. 2.2 illustrates the explained variation (based on adjusted R² values) of the 

myrmecophile community by the different subsets. Explained variation (12.9%) was 

Species N Mean % Max Host Literature hosts 
 
COLEOPTERA 
 

      

Staphylinidae       
Stenus aterrimus Erichson, 1839 17 0.20 16.5 2 R+P RWA 
Thiasophila angulata (Erichson, 1837) 131 1.56 54.1 22 R+P RWA/Fsang/Lfuli/Lbrun 
Nothotecta flavipes (Gravenhorst, 1806) 12 0.14 11.8 2 R+P RWA/Fsang/Lflav 
Lyprocorrhe anceps (Erichson, 1837) 46 0.55 18.8 16 R+P RWA/Lfuli 
Amidobia talpa (Heer, 1841) 106 1.26 32.9 36 R+P RWA/Lfuli 
Dinarda maerkelii Kiesenwetter, 1843 10 0.12 10.6 2 R+P RWA/Fsang 
Quedius brevis Erichson, 1840 7 0.08 7.1 2 R+P RWA/LFuli/Lbrun/Fsang 
Leptacinus formicetorum Märkel, 1841 119 1.42 35.3 16 R+P  RWA/Lbrun 
       
Chrysomelidae       
Clytra quadripunctata (Linnaeus, 1758) 159 1.89 45.9 23 R+P  RWA/Ffusc/Fsang 
       
Monotomidae       
Monotoma angusticollis (Gyllenhal, 1827) 114 1.37 47.1 16 R+P RWA 
Monotoma conicicollis (Gyllenhal, 1827) 39 0.47 21.2 5 R+P  RWA  
       
Histeridae       
Myrmetes paykulli Kanaar, 1979 14 0.17 15.3 2 R+P  RWA/(L sp.) 
Dendrophilus pygmaeus (Linnaeus, 1758) 2 0.02 3.5 1 P  RWA/Lfuli 
       
ARANEAE       
Thyreosthenius biovatus (O. P.-Cambridge, 
1875) 

450 5.36 80.0 24 R+P  RWA/(Ffusc) 

Mastigusa arietina (Thorell, 1871) 26 0.31 10.6 7 P  RWA/Lfuli/Lbrun/Ffusc 
       
ISOPODA       
Platyarthrus hoffmannseggii Brandt, 1833 259 3.1 16.5 109 R+P all ants 
       
COLLEMBOLA       
Cyphoderus albinus Nicolet, 1842 4500 54.2 91.8 1362 R+P all ants 
       



C H A P T E R  2 | 50 
  

 
 

relatively low, indicating that random processes and possibly unrecorded variables 

have a large effect on species composition. Pure within-site isolation (isolation 

conditioned for site and mound characteristics) (explained variation = 2.4%, P = 0.002) 

and pure site identity (conditioned for isolation and mound characteristics) (explained 

variation = 4.4%, P = 0.004) structured significantly the myrmecophile community. Pure 

mound characteristics (conditioned for isolation and site identity) (P = 0.151) had no 

effect on the composition of the myrmecophile community. Mound characteristics in 

particular sites also explained a large fraction (3.6%). The PCA plot depicts that most 

myrmecophiles are correlated with increasing S100 and/or decreasing dmin, so their 

occurrence increases with decreasing isolation (Fig. 2.3). Mounds of different sites are 

not separated in distinct clusters, but show some structuring corresponding with the 

results of variation partitioning. Mounds of large RWA sites are similar in species 

composition to those of small RWA sites (95% confidence ellipses overlapping). The 

species composition of the community associated with F. rufa is only slightly different 

from (95% confidence ellipses slightly distinct) the community associated with F. 

polyctena. These differences could result from the correlation between site and host 

ant species, i.e. some sites supported one RWA or had a majority of one species. 

Therefore site differences in myrmecophile prevalence could cause differences in host 

species preference. In the variation partitioning analysis, this variation could be 

captured by the fraction shared by site and mound characteristics. 

Figure 2.2. Variation partitioning based on adjusted R². Total variation is 100% and 
numbers represent proportions of explained variationby each fraction. Mound 
characteristics subset = pH, moisture, host, within-site isolation subset = dmin and S100, 
site subset = site identity. 
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Univariate analysis 
Table 2.3. Overview of model selection for models explaining (a) total myrmecophile species richness, (b) Staphylinidae species 
richness and (c) restricted myrmecophile species richness (total species richness minus the panmyrmecophilous species C. 
albinus and P. hoffmannseggii). Models are ranked from the lowest AICc value (= ‘best’ model) to higher AICc values (decreasing 
likelihood). Only models with ∆ AICc ≤ 2 are selected. Akaike’s weight (wi) indicate the likelihood of a model, given the set of 
models being considered (Burnham and Anderson 2002).  

 

 

Species richness Model df AICc ∆ AICc wi 
      

(a) Total (intercept)+S100 2 349.78 0.00 0.35 

 (intercept)+S100+pH 3 350.50 0.71 0.25 
 (intercept)+S100+moisture 3 350.51 0.73 0.25 
 (intercept)+S100+site size 3 351.47 1.69 0.15 
      

(b) Staphylinidae (intercept)+S100 2 270.3  0.00 0.54 

 (intercept)+S100+moisture 3 271.8  1.52 0.25 
 (intercept)+S100+mound size 3 272.2  1.91 0.21 
      

(c) Restricted myrmecophiles (intercept)+S100 2 343.12  0.00 0.38 

 (intercept)+S100+moisture 3 343.66  0.54 0.29 
 (intercept)+S100+pH 3 344.52  1.40 0.19 
 (intercept)+S100+site size 3 345.04  1.91 0.15 
      

Figure 2.3. PCA diagram with species, mounds and significantvariables of RDA analyses plotted. Mounds are 
sorted according to host ant species (F. rufa = triangle, F. polyctena = circle) and site (different colors). Isolation 
decreases with higher S100 but increases with higher dmin. Most species are positively correlated with S100 and/or 
negatively with dmin. At = Amidobia talpa, Cq = Clytra quadripunctata, Ca = Cyphoderus albinus, Dend = 
Dendrophilus pygmaeus, Dm = Dinarda maerkelii, Lf = Leptacinus formicetorum, La = Lyprocorrhe anceps, Ma 
= Mastigusa arietina, Mona = Monotoma angusticollis, Mc = Monotoma conicicollis, Mp = Myrmetes paykulli, Nf 
= Notothecta flavipes, Ph = Platyarthrus hoffmannseggii, Q = Quedius brevis, Sa = Stenus aterrimus, Ta = 
Thiasophila angulata, Tb = Thyreosthenius biovatus. Host ant species 95% confidence ellipses indicated with 
gray dotted ellipses: upper ellipse F. rufa, lower ellipse F. polyctena.Site size 95% confidence ellipses indicated 
with gray full ellipses: left ellipse small site, right ellipse large site. 
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Table 2.4. Overview of model-averaged estimates for the log linear Poisson models explaining the log of the response variables: 
(a) total myrmecophile species richness, (b) Staphylinidae species richness and (c) restricted myrmecophile species richness. 
Estimates are averaged for all models with ∆AICc ≤ 2 and weighted by each model’s Akaike weigth (wi). Relative variable 
importance (wip) of a particular variable is the sum of all wi’s of models incorporating that variable. Isolation decreases with higher 
S100. Thus positive S100 slopes correspond with higher diversity in less isolated mounds. 95% CI of predictors not encompassing 
0 are given in bold. 

 

Table 2.3 reports the selected set of models for which ∆ AICc ≤ 2. The best model 

explaining either (a) total species richness, (b) Staphylinidae richness or (c) restricted 

myrmecophile species richness (total species richness minus the panmyrmecophilous 

species C. albinus and P. hoffmannseggii), was a model with an intercept and only the 

predictor variable S100 incorporated. Other well supported models (∆ AICc ≤ 2) always 

incorporated S100 and one other predictor variable. Parameter averaging across those 

models for which ∆ AICc ≤ 2 and respectively explaining (a) total species richness, (b) 

Staphylinidae richness or (c) restricted myrmecophile species richness is given in 

Table 2.4. For the three species richness measures, only the 95% CIs of S100 do not 

encompass 0. This indicates that this factor is significant in the averaged model. The 

relationship between increasing S100 and species richness of total myrmecophiles, 

Staphylinidae and restricted myrmecophiles is given in Fig. 2.4. The S100 effect size is 

higher for restricted myrmecophile richness compared with total species richness 

(Table 2.4). The effect of isolation is hence lower on species richness when also 

considering the panmyrmecophilous species. This is logical because C. albinus and P. 

hoffmannseggii also occupy nests of other ant species among the nest mounds in the 

Species richness predictor variable estimate 95% CI wip 

     

(a) total  (intercept) 1.62 1.52 to 1.72  
 S100  0.14 0.05 to 0.24 1.00 
 moisture -0.02 -0.16 to 0.04 0.25 
 pH 0.02 -0.04 to 0.17 0.25 
 host ant    
 mound size    
 site size 0.01 -0.14 to 0.29 0.15 
 site    
     

(b) Staphylinidae  (intercept) 0.55 0.38 to 0.72  
 S100 0.33 0.16 to 0.49 1.00 
 moisture -0.02 -0.24 to 0.10 0.25 
 pH    
 host ant    
 mound size -0.01 -0.22 to 0.14 0.21 
 site size    
 site    
     

(c) Restricted myrmecophiles  (intercept) 1.37 1.25 to 1.48  
 S100 0.20 0.09 to 0.31 1.00 
 moisture -0.02 -0.18 to 0.04 0.29 
 pH 0.01 -0.07 to 0.17 0.19 
 host ant    
 mound size    
 site size 0.01 -0.18 to 0.30 0.15 
 site    
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study sites. Staphylinidae species richness is more severely affected by isolation 

compared with the average effect of isolation on restricted myrmecophiles. The factor 

S100 was also highly significant in the ‘best’ models (lowest AICc) with only S100 as 

predictor variable ((a) total species richness: P = 0.005, (b) Staphylinidae species 

richness: P < 0.001 (c) restricted myrmecophile species richness: P < 0.001). 

 
Fig. 2.4. Relationship between increasing S100 (increasing amount of nest surface of other mounds within 100 metres = decreasing 
isolation) and species richness of total myrmecophiles, Staphylinidae and restricted myrmecophiles (= total myrmecophile species 
richness minus panmyrmecophilous Cyphoderus albinus and Platyarthrus hoffmannseggii). Fitted models are based on model-
averaged coefficients. 

  



C H A P T E R  2 | 54 
  

 
 

DISCUSSION 

Our study demonstrates that severely fragmented wood ant populations still support a 

relatively diverse group of myrmecophiles. We found in this study 17 obligate 

myrmecophile species including six specialist RWA associates. Studies in large forest 

complexes in Finland recorded a similar diversity: Päivinen et aI. (2004) found 16 

beetle species in 49 mounds of F. aquilonia, Härkönen and Sorvari (2014) reported 22 

myrmecophiles in 12 mounds with F. polyctena. In this study, F. rufa and F. polyctena 

did not differ in total myrmecophile species richness and staphylinid species richness 

and their community composition was similar. The myrmecophiles in this study are also 

associated with other RWA species (F. lugubris, F. aquilonia, F. pratensis) suggesting 

that the myrmecophile community is probably similar for all six European RWAs 

(Päivinen et al. 2004, Lapeva-Gjonova and Lieff 2012, Robinson and Robinson 2013, 

chapter 1: Parmentier et al. 2014).  

RWA mounds as patches in a myrmecophile metapopulat ion / 
metacommunity   
Myrmecophiles perceive ant nests as small suitable patches distributed in a hostile 

landscape matrix. In the studied sites, RWA mound distribution is highly 

heterogeneous ranging from highly isolated to well connected and ultimately to 

polydomous aggregations. In accordance with the predictions of metapopulation 

theory, we found very strong evidence that myrmecophile and rove beetle diversity was 

positively correlated with mound connectivity. These results are akin to Päivinen et al. 

(2004) and Härkönen and Sorvari (2014) who reported a negative correlation between 

myrmecophile diversity and nest isolation in F. aquilonia and F. polyctena. Variation 

partitioning demonstrated that among site differences explained more variation in the 

myrmecophile community than within-site isolation. This suggests that processes at a 

larger spatial scale than the myrmecophile metacommunity in a particular RWA site 

are important as well. These processes could include the spatial distribution and 

isolation of the sites (i.e. myrmecophiles are organized in a metacommunity of 

metacommunities). Site isolation, however, is hard to estimate as most species occur 

with more general ant species as well. 

Larger patches can support larger populations and are more likely to be colonized in 

metapopulation models. Therefore large patches have a higher occupation probability 

in classical metapopulation models (Hanski 1994). In contrast with Päivinen et al. 

(2004) we did not find a relationship between mound size and diversity or prevalence. 

However, we sampled a fixed amount of nest material from all nests, rather than the 
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whole mound. So we measured density rather than population sizes. Therefore total 

species richness and population sizes are probably higher in large nests.  

Local patch characteristics have been demonstrated as a third factor affecting 

metapopulation and metacommunity dynamics (Ranius 2000, Thomas et al. 2001, 

Jeffries 2005). Moisture and pH are two key abiotic variables that structure the soil 

arthropod community and might thus determine the quality of wood ant mounds for 

myrmecophiles as well (Giller 1996). Generally, dry and/or acid soils tend to have lower 

diversity and abundances of soil fauna (Giller 1996, Tsiafouli et al. 2005). Additionally, 

there are indications of differential niche preference amongst soil organisms, whereby 

related species favor different conditions along the soil pH and soil moisture gradients 

(Giller 1996). The sampled RWA mounds varied considerably in acidity (pH: 3.10 - 

6.33) and moisture content (5% - 67%), but this had no effect on total diversity or 

community composition.  

Metapopulations need a minimum number of patches for long-term persistence, 

commonly referred to as the minimum viable metapopulation size (MVM) (Hanski et al. 

1996). A key result of this study is that (very) small and isolated RWA populations can 

have a very diverse myrmecophile community, suggesting that MVM is low for RWA 

myrmecophiles. This can be partly explained by other ant host nests which can serve 

as stepping stones. However, alternative host ant nests were rare for most 

myrmecophiles. Moreover RWA specific myrmecophiles such as T. biovatus and M. 

angusticollis were also found in the small RWA sites, indicating that those 

myrmecophiles could persist in very small metapopulations. A RWA mounds provide 

a warm and moist environment with plenty of food resources (Skinner 1980, Rosengren 

et al. 1987, Frouz et al. 2005). Moreover, large numbers of queens occur in single 

mounds and regularly new mounds bud from the nest (pers. observations TP). 

Therefore the extinction risk of the mound, colony and population at a larger scale is 

relative low without major disturbances. Hence, a small number of highly connected 

mounds might support small, stable myrmecophile metapopulations for a long period.  

Ant nests and their associates as terrestrial model  systems in 
metapopulation and metacommunity research 
Ant nests provide suitable systems to test metapopulation and metacommunity theory. 

Nests of ants are clearly delineated islands in a matrix of unsuitable habitat for obligate 

myrmecophiles. Therefore “patch” dimensions, “patch” isolation and connectivity 

measures are easy to quantify. Because of their small size, homogenous and 

representative samples can be easily collected and rapidly extended to a large number 
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of patches. Ant nests are abundant and many myrmecophiles or myrmecophile 

communities are widespread. This allows hypothesis testing on both a broad spatial 

scale (e.g. regional effects on metacommunity dynamics) and on a local scale (e.g. the 

effect of altitudinal and environmental variables on the metacommunity dynamics of 

panmyrmecophilous species when multiple hosts are available in a site). Ant nests 

vary in longevity and regularly new nests are founded independently or budded from 

other nests (e.g. RWA nest life span ranges from less than 1 year to more than 70 

years (Klimetzek 1981, Gösswald 1989). This nest dynamism facilitates the tracking of 

colonization, succession and competition (cf. competition-colonization trade-off). 

Promising ant hosts to test metacommunity hypotheses are especially RWAs (F. rufa 

group), Formica sanguinea and the shiny black wood ant Lasius fuliginosus. Their 

nests are easy to track, they have a wide distribution and they support a large diversity 

of species in one nest (Päivinen et al. 2003, chapter 1: Parmentier et al. 2014). Overall, 

the properties of ant nests correspond thus with classic theoretical metapopulations 

and metacommunities. They are valuable tools to broaden our knowledge on general 

questions in evolution and community functioning. 
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APPENDIX CHAPTER 2 

Appendix 2-1: Detailed maps of different RWA sites.  

site numbers correspond to overview map of Fig. 2.1 
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ABSTRACT 

 

In many species, specialized defence traits and strategies are crucial for surviving 

enemy attacks or securing resources. In numerous social insect lineages, a 

morphologically and behaviourally distinct soldier caste specializes in colony defence, 

with larger foragers typically engaging most in the aggressive defence of the colony 

against external threats. We hypothesized, however, that specialization in aggression 

could show vastly different patterns in the context of the defence against small 

intranidal parasites that prey on brood. This is because we expected that small, 

intranidal nurse workers could be better suited to defend against these parasitic 

myrmecophiles (= ant associates) due to their better matching size, high encounter 

rate and the high task switching costs that would occur if foragers had to carry out this 

task. Here, we present data that support this hypothesis from a study on specialization 

in defence against two parasites in the red wood ant Formica rufa. In particular, we 

show that small workers displayed the strongest aggressive behaviour towards the 

parasitic rove beetle Thiasophila angulata and the spider Thyreosthenius biovatus, and 

present evidence that small workers were better at preventing brood predation than 

larger workers. In addition, there was worker task specialization in defensive 

behaviour, with nurses and workers at nest entrances being more aggressive towards 

T. angulata than extranidal foragers. We argue that this context-dependent 

specialization in aggression and nest defence was likely to be important in favouring 

the pronounced worker polymorphism observed in both this and other ant species and 

discuss our findings in relation to models for the evolution of division of labour and 

caste polymorphism in insect societies.  
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INTRODUCTION 

Across the animal kingdom, aggression is the predominant form of behaviour to 

acquire or defend vital resources (Krebs and Davies 2012, Grether et al. 2013) and 

both intraspecific and interspecific animal contests are frequently settled on the basis 

of size asymmetries (Reichert 1998). In group-living organisms defence can be shared 

by group members or in some cases allows for task specialization. Specific members 

will then act as specialized defenders as demonstrated in, for example, cichlid fishes, 

spiders and naked mole-rats (Lacey and Sherman 1991, Bruintjes and Taborsky 2011, 

Pruitt and Riechert 2011). Social insects are especially good models for exploring 

defence specialization as they have such distinct morphological and behavioural 

specializations. In numerous social insect lineages, the size advantage of large 

individuals has led to the evolution of a morphologically distinct caste of larger and 

more aggressive soldiers, which specialize in defending the colony (Hölldolber and 

Wilson 1990, Nowbahari et al. 1999). Indeed, an evolved soldier caste occurs not only 

in some ants, bees and termites but also in eusocial aphids, gall-dwelling thrips and 

snapping shrimps (Hölldobler and Wilson 1990, Tian and Zhou 2014). When physical 

castes occur, their presence generally benefits the productivity or survival of the colony 

(Hölldobler and Wilson 1990, Billick and Carter 2007, Modlmeier and Foitzik 2011). 

Nevertheless, a morphological caste system may also have costs, as it may prevent a 

colony from rapidly adjusting caste ratios, increase the energetic rearing cost or limit 

the task repertoire (Oster and Wilson 1978, Hölldobler and Wilson 1990). These costs 

may explain why, in the majority of social insect species, workers only specialize 

behaviourally in different tasks, usually in relation to their age (‘age polyethism’, Oster 

and Wilson 1978, Hölldolber and Wilson 1990). In this case, young workers typically 

perform safe tasks inside the nest first, such as nursing the brood, and only later in life 

move on to more risky tasks outside the nest, such as foraging or territorial defence 

(Hölldobler and Wilson 1990, Sturgis and Gordon 2013), a configuration that has been 

shown to optimize colony efficiency (Tofilski 2002).  

Although the studies cited above demonstrate that in many social insect species, a 

morphologically and behaviourally distinct soldier caste may specialize in colony 

defence, and that larger and older foragers typically engage most in the aggressive 

defence of the colony (Hölldolber and Wilson 1990, Nowbahari et al. 1999, Wilgenburg 

et al. 2010), this pattern has been demonstrated almost exclusively in relation to the 

defence against outside threats by large enemies, such as competitor ants or 

vertebrates. We hypothesized, however, that specialization in aggression could show 
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a directly opposite pattern in the context of defence against small intranidal parasites 

preying on brood. This is because we expected that small, intranidal nurse workers 

could be better suited to defend against such enemies than large foragers due to their 

better matching size, their more frequent interaction with the brood and the parasites 

and the high costs that would occur if foragers had to regularly switch to carrying out 

defensive tasks inside the colony (Duarte et al. 2011, Goldsby et al. 2012). The aim of 

this study was to provide the first test of this adaptive theory on context specificity in 

task specialization in aggression. To do so, we used the red wood ant (RWA), Formica 

rufa, and two associated brood parasitic myrmecophiles, the rove beetle, Thiasophila 

angulata, and the linyphiid spider Thyreosthenius biovatus, as a model. In this size-

polymorphic ant, large foragers have been shown to be more involved in hunting and 

defence against other colonies (Higashi 1974, Herbers 1979, McIver and Loomis 1993, 

Wright et al. 2000, Tanner 2008, Parmentier 2010, Batchelor and Briffa 2011). In our 

study, however, we tested whether a different pattern holds in terms of worker size and 

task group (nurse, forager, mound worker) and specialization in aggression in the 

context of defence against intranidal, myrmecophile parasites preying on brood. In 

addition, we assessed for one of the parasites whether small nurses were better brood 

defenders than large nurses.  

 

MATERIAL AND METHODS 

Study species 

Red wood ants 

Red wood ants (Formica rufa group) are moderately polymorphic, displaying a 

pronounced size variation (4.5-9 mm), but lack discrete subcastes with shape 

specialization (van Boven 1986). RWA workers have been reported to perform different 

roles according to both age and size (Higashi 1974, Herbers 1979, McIver and Loomis 

1993, Wright et al. 2000, Tanner 2008, Parmentier 2010)(Higashi 1974, Tanner 2008, 

Parmentier 2010). Young workers nurse the brood (mainly small, young workers) or 

do not participate in tasks (mainly large, young workers). Workers of intermediate age 

are engaged in intranidal building (mainly small workers) or repairing the nest surface 

(mainly large workers). Finally, the oldest workers tend to forage for food. Small, old 

workers are mainly allocated to aphid tending close to the nest, whereas large, old 

workers mainly hunt for prey and tend aphids at larger distances. Large RWA workers 

are more aggressive towards conspecific workers (Batchelor and Briffa 2011). Ant 

workers can switch task depending on the needs of the colony (Hölldobler and Wilson 
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1990). However, foragers in RWAs, in particular, are rather consistent in doing their 

task (Rosengren and Fortelius 1986, Parmentier et al. 2012). 

Red wood ant-associated myrmecophiles 

Myrmecophiles or ‘ant guests’ live in close association with ants and are able to 

penetrate into the deepest parts of the nests. Myrmecophiles’ life strategies are very 

diverse, with some being commensals, some ecto- or endoparasites and others 

parasites that prey on brood (here also referred to as brood predators), steal food 

(kleptoparasites) or feed on ants (myrmecophages) (Hölldobler and Wilson 1990). 

Myrmecophiles can integrate into ant colonies based on the presence of specific 

chemical (e.g. adoption of the host colony odour, emitting repellent compounds, 

appeasement glands), behavioural (e.g. swift movements, death feigning) and 

morphological (e.g. small, slender body, short appendages, myrmecomorphic) 

adaptations (Hölldobler and Wilson 1990). These adaptations prevent ants deterring 

or killing these myrmecophiles. Parasites of ants are widespread and could impose 

high costs, although their long-term impact is poorly understood (Hölldobler and Wilson 

1990, von Beeren et al. 2011, Hovestadt et al. 2012). An especially rich community of 

myrmecophiles, of which some are parasites that prey on brood, can be found living 

inside European RWA colonies (chapter 1: Parmentier et al. 2014). 

As model species we used the parasitic brood predators T. angulata and T. biovatus. 

The rove beetle, T. angulata, is a typical scavenger that feeds on prey items collected 

by the ants. It has been observed eating ant eggs and resides in the ants’ brood 

chambers. We confirmed this in preliminary nest location tests (full tests see chapter 

5) with artificial nests of six connected pots (9 cm diameter, 5 cm height) filled with 1 

cm plaster and nest material. We transferred 360 workers, 150 pupae and 90 larvae to 

the nest. After 1 day, ant workers concentrated all brood in one chamber (hereafter 

called the brood chamber). Worker density was also highest in this chamber. Then T. 

angulata individuals were randomly divided over the six chambers. After 3 days, 22 

beetle individuals were found in the brood chamber and 18 in the other five chambers. 

he small linyphiid spider T. biovatus is also strictly associated with RWAs (chapter 1: 

Parmentier et al. 2014). It also occurs in the brood chambers as demonstrated by 

similar nest location tests as explained above, in which eight individuals were located 

in the brood chamber and eight in the other five chambers. The spider was observed 

eating ant eggs and small larvae. Both species can be common in the RWA nests in 



C H A P T E R  3  | 66 
 

 
 

our study population. For example, in one nest, we found 24 T. biovatus spiders and 

in another 22 T. angulata beetles in a 2-litre sample. 

Sample collection 

We collected F. rufa workers and associated T. angulata rove beetles of five distinct 

colonies originating from two populations (West-Vleteren: WV1, WV2, WV3, Vladso: 

VL) in western Flanders, Belgium and one population (Boeschepe: BOE) in northern 

France during 2012-2014. Thyreosthenius biovatus spiders were taken from WV1, 

WV2 and WV3 in the same period. We collected the myrmecophiles by spreading out 

nest material on a large tray in the field. Beetles and spiders were kept together with 

workers and nest material of the colony of origin until the start of the experiments (Fig. 

3.1).  

Experiments 

Experiment 1: specialization in aggression towards parasites  

We sampled workers and classified them as performing one of three different tasks. 

Workers following pheromone trails heading towards trees with aphids (which are 

milked for food) were classified as foragers (> 5 m from nest). Mound workers were 

workers that stayed near the nest openings. They differed from returning and outgoing 

foragers, which walked determinedly in straight lines to or away from the nest openings 

on the mound. Finally, we took a nest sample from the deep underground part of the 

nest and spread it out on a tray. These samples consisted of an enormous amount of 

eggs, larvae and queens, which indicated that we took samples of the deep brood 

chambers. We classified workers in these deep samples as nurses when they carried 

eggs or larvae into safety in the tray in the field. For each task, we selected workers 

Figure 3. 1. Size-polymorphic F. rufa red wood ant workers shown alongside the two parasites 
studied here, the rove beetle T. angulata and the spider T. biovatus. Photo: T. Parmentier 
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over the complete size range of the colony. Mound workers found in this study were 

expected to have an intermediate age. All three tasks are done by workers over the 

entire range (see x-axis range in Fig. 3.2 for three tasks). However, the average size 

of nurses is smaller than the average size of foragers and mound workers (Higashi 

1974, Herbers 1979, Parmentier 2010). Workers were placed in a circular, plastic cup 

(7 cm diameter, 5 cm height) with a bottom layer of plaster of Paris (ca. 1 cm) and with 

the inner side coated with Fluon. After an hour of acclimatization, a T. angulata rove 

beetle found in the same nest as the focal ant was added. After 30 s, 15 consecutive 

interactions (in some trials 14) between ant and beetle were recorded. Ant-parasite 

aggression was quantified as the proportion of interactions that were 

aggressive (either biting, snapping and opening of mandibles) out of the 

total interactions. This experiment was done blind with respect to task and trials were 

tested in three colonies (WV1, WV2, VL). We used 40 beetles in 274 trials in total (total 

for three colonies: Nnurse = 106, Nforager = 88, Nmound worker = 80), but with at least 1 h 

between consecutive trials. Head width was used as a proxy for size and was 

measured after the experiment with a binocular microscope (40X).  

Similar aggression tests were conducted between mound workers and T. biovatus. 

Here we only tested the effect of size variation and not the effect of worker task on 

aggression. Aggression trials were tested in three colonies (WV1, WV2, WV3). Spiders 

(18 in total) were used in 90 trials in total, but with at least 1 h between consecutive 

trials. The beetle and spider behaviour did not seem to change after spiders were 

reused. Individuals were also not wounded during the interactions. 

Experiment 2: defence against brood predation 

Here we tested whether small nurses were better defenders of the brood. To do so, a 

set of either five small nurses (head width < 1.4 mm, average mean per set ± SE = 

1.09 ± 0.11 mm) or five large nurses (head width > 1.6 mm, average mean per set ± 

SE = 1.81 ± 0.12 mm) were placed in a small vial (4.5 cm diameter) filled with ca. 1 cm 

of moistened plaster of Paris. Subsequently, we placed five RWA eggs in the centre 

and introduced a T. angulata rove beetle, after which we counted the eggs eaten after 

24 h. Additionally, a control with a beetle and without ants was performed. These three 

treatments (control - small nurses - large nurses) were repeated in two F. rufa colonies 

(WV1, BOE, total for two colonies: Ncontrol = 36, Nlarge = 37, Nsmall =36). Nurses, brood 

and T. angulata beetle in a trial originated from the same colony. A different beetle was 

used for every test. Workers readily started to nurse, lick and transport the eggs when 

introduced in the arena. For the spider T. biovatus, we also used a control experiment 
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with five eggs to validate its status as brood predator and compare the potential impact 

of both myrmecophiles. 

Data analyses 

Experiment 1: specialization in aggression towards parasites 

The probability of aggressive acts occurring towards T. angulata was modelled using 

a GLMM (generalized linear mixed model) with binomial error distribution and logit link 

function using package lme4 version 1.1-6 in R version 3.0.1 (R Core Team 2014). 

The full model included head width, task (nurse, forager and mound worker) and the 

interaction between these two variables as fixed factors, and colony and the individual 

beetle used as nested random factors (beetle nested in colony). We also included an 

observation level random factor to account for overdispersion (Browne et al. 2005). 

Backward model selection was performed with the drop1 function (Wald chi-

square test), to remove nonsignificant fixed predictors from the model. Similarly, the 

proportion of aggressive acts of mound workers towards the spider T. biovatus were 

fitted with a binomial GLMM, but here only size was modelled as a fixed factor. Colony 

and individual spider were coded as nested random factors (spider nested in colony), 

and an observation level factor was again incorporated to take into account possible 

overdispersion. Significance of the fixed factors in both (final) models was tested with 

likelihood ratio tests (LRT, mixed function, package afex, version 0.9-109) in R. 

Fisher’s LSD tests were used as post hoc tests in the T. angulata model to compare 

pairwise the three tasks (glht function, package multcomp 1.3-3). 

Experiment 2: defence against brood predation 

The proportion of the eggs that were eaten by T. angulata was compared among 

treatment conditions (with control, small or large workers) and colonies, as well as their 

interaction using a fixed-factor GLM (generalized linear model) with binomial error 

distribution. We accounted for overdispersion by using a model of the quasibinomial 

family. Backward model selection was performed with the drop1 function (Wald chi-

square test) to remove nonsignificant predictors from our model. Significance of the 

predictor of the final model was assessed using LRTs (Anova function, package car) 

in R (R Core Team 2014). Fisher’s LSD tests were used as post hoc tests (glht function, 

package multcomp 1.3-3). 
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RESULTS 

Experiment 1: specialization in aggression towards parasites 

The rove beetle T. angulata escaped ant aggression by quickly running away. It often 

bent its abdomen, which is a typical defence strategy of rove beetles by which they 

emit defensive chemicals. The beetle never attacked ant workers. In terms of size and 

task group specialization in defence against this beetle, model selection resulted in a 

model in which worker size and task were included as main effect factors. As expected 

by our hypothesis, small workers showed significant specialization in defence against 

this beetle, as the likelihood of aggression of ant workers towards the beetle declined 

with increasing worker size (binomial GLMM, LRT: χ² = 40.11, P < 0.0001, Fig. 3.2). In 

addition, worker aggression was affected by the task group to which the worker 

belonged (binomial GLMM, LRT: χ² = 6.85, P = 0.033, Fig. 3.2), with foragers being 

less aggressive than either nurses (z = 2.366, Fisher LSD: P = 0.018) or mound 

workers (z = 2.212, Fisher LSD: P = 0.027), but with the aggression of mound workers 

and nurses not being significantly different from one another (z = -0.0003, Fisher LSD: 

P = 0.999). The spider T. biovatus avoided ant aggression by running away and the 

spider never attacked ant workers. Workers, however, also showed a clear size 

specialization in aggression towards this spider, with small workers once again being 

more aggressive (binomial GLMM, LRT: χ² = 39.65, P < 0.0001, Fig. 3.3).  

Both myrmecophiles occurred in the brood chambers of the ants (see also chapter 5). 

In none of the cases in which they were attacked were they killed or wounded. The 

beetle escaped by rapid movements or by emitting chemicals from the abdomen. Its 

slender body hampered the ants’ attempts to grasp the beetle. The spider elicited less 

aggression and could often walk freely among the ants. It avoided being bitten by 

quickly running away. These observations suggest that the spider may use chemical 

mimicry (displaying a chemical profile similar to the ant host) or chemical insignificance 

(expressing a small amount of recognizable odour cues) to avoid detection (van 

Zweden and d’Ettorre 2010). 
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Figuur 3.2. Proportion of aggressive interactions performed by three F. rufa task groups (‘nurse’, ‘mound worker’ and ‘forager’) 
against the rove beetle T. angulata in relation to the workers' size. Binomial GLMM: effect of worker size on the probability of 
aggression: P < 0.001, effect of task group on the probability of aggression: P ¼ 0.033. Fisher's LSD post hoc tests of the three 
tasks: *P < 0.05. Note that lines with fitted model predictions for nurses and mound workers are overlapping on the figure. 

 

 

 
Figuur 3.3. Proportion of aggressive interactions performed by F. rufa workers against the parasitic spider T. biovatus in relation 
to the workers' size. Binomial GLMM: effect of worker size on the probability of aggression: P < 0.001. 
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Experiment 2: defence against brood predation 

The rove beetle was found to heavily prey on the ant eggs in the control treatment 

without workers (proportion of eggs eaten: 0.85, 95% confidence interval, CI: 0.73-

0.92). The spider imposed lower costs in terms of brood predation (proportion of eggs 

eaten: 0.19 ± 0.06 SE), which could explain why the beetle also elicited more 

aggression than the spider (see results above and Scharf et al. 2011 and von Beeren 

et al. 2011. In terms of specialization in protection against brood predation by the rove 

beetle, model selection resulted in a model in which treatment (control, small or large 

workers) was included as the main effect factor. The proportion of eggs eaten by the 

rove beetle was significantly reduced in the presence of ants (binomial GLM, LRT: χ² 

= 35.636, P < 0.0001, Fig. 3.4). Both small (proportion of eggs eaten: 0.389, 95% CI: 

0.27-0.53, z = -4.605, Fisher LSD: P < 0.0001) and large workers (proportion of eggs 

eaten: 0.639, 95% CI: 0.50-0.76, z = -2.422, Fisher LSD: P = 0.015) reduced the 

proportion of eggs eaten compared with the control treatment without ants. 

Nevertheless, in support of our a priori hypothesis, small nurses were significantly more 

efficient than large nurses in protecting the brood against T. angulata (z = -2.592, 

Fisher LSD: P = 0.010).  

 

Figure 3.4. Proportion of eggs eaten by T. angulata in relation to the size of F. rufa workers. Bars show 
the proportion of ant eggs (± 95% confidence intervals) that were eaten in an arena by a T. angulata
individual in the presence of five large nurses (large) and five small nurses (small) as well as in the 
absence of any ants (control). Binomial GLM: *P < 0.05, **P < 0.001. 
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DISCUSSION 

Overall, our results demonstrate that specialization in defence against intranidal 

parasites preying on brood in the RWA F. rufa shows vastly different patterns from 

those documented previously in the context of defence against large, external 

enemies, such as vertebrates or other ants (Lamon and Topoff 1981, Moffett 1985, 

Hölldolber and Wilson 1990, Batchelor et al. 2012), and we discuss these results in the 

context of the evolution of division of labour and caste polymorphism in insect societies 

(Oster and Wilson 1978, Hasegawa 1997, Beshers and Fewell 2001).  

A first key result was that there was significant size specialization in aggression, but 

that small workers were more aggressive towards the parasites than large ones, which 

contrasts with the traditional results of large workers generally being more aggressive 

and efficient in nest defence in size-polymorphic ant species (Lamon and Topoff 1981, 

Moffett 1985, Hölldolber and Wilson 1990, Batchelor et al. 2012). Two observations 

supported this conclusion: worker aggression towards the myrmecophile parasites T. 

angulata and T. biovatus were negatively correlated with worker size and small nurses 

were more efficient at decreasing egg predation by T. angulata than large nurses. 

These results diverge from earlier results that showed that large F. rufa workers were 

supreme fighters in clashes with other colonies (Batchelor et al. 2012), being more 

aggressive, living longer in fights and compensating for the poor fighting capabilities of 

small workers in fights between rival groups of workers (Batchelor and Briffa 2011, 

Batchelor et al. 2012). Based on this, we hypothesize that small workers detect small 

myrmecophiles more efficiently. Indeed, both myrmecophiles studied are fairly small 

and match the size of the smallest workers (Fig. 3.1). Small workers bear their 

antennae closer to the soil surface which could promote the detection rate of small 

animals. In addition, small workers of polymorphic Camponotus ants have been shown 

to bear more sensillae on their antennae and have more antennal glomeruli in their 

brain to process olfactory stimuli compared with medium and large workers (Mysore et 

al. 2009, 2010). A similar morphological adaptation could promote the detection of 

small intruders by small RWA workers. Most parasites (both kleptoparasites and brood 

predators) associated with RWAs have similar small sizes (chapter 1: Parmentier et al. 

2014). Consequently, nest defence against intranidal parasitic myrmecophiles is likely 

to be allocated to small workers based on increased ergonomic efficiency (Oster and 

Wilson 1978, Hasegawa 1997).  

A second key result was that worker aggression also differed between different task 

groups and again contrasted with the typical pattern observed in relation to defence 
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against external threats. In particular, we found that workers that performed tasks 

inside the nest (i.e. that were nursing or present at the nest entrances) were, over their 

entire size range, more aggressive towards T. angulata than workers foraging outside 

the nest. Again, this pattern is opposite to that documented in other studies on task 

cohort and age specialization in aggression in the context of defence against extranidal 

threats (Hölldobler and Wilson 1990). For example, foragers of the leafcutter ant 

Acromyrmex echinatior have been shown to more rapidly display aggressive behaviour 

than within-nest workers (Norman et al. 2014) and a similar pattern has been observed 

in the ant Cataglyphis cursor (Nowbahari and Lenoir 1989). This pattern has been 

explained on the basis that division of labour in these ants is partly based on age 

polyethism, whereby only older workers engage in risky foraging and defence tasks. 

By performing risky tasks at older age, workers extend their life expectancy and 

improve colony efficiency (Duarte et al. 2011).  

The contrasting pattern of task group specialization in the defence against external 

enemies versus parasites preying on brood can be interpreted in adaptive terms in the 

context of models of division of labour (Oster and Wilson 1978, Hasegawa 1997, 

Beshers and Fewell 2001), and could have several reasons. First, the parasites studied 

here were found not to attack ant workers, but rather to avoid any interaction. Hence, 

defence against these parasites may not be very risky compared to defence against 

other ants or vertebrates, and thereby favour the performance of intranidal defence by 

young nurses as well (Tofilski 2002). Second, workers inside the nest interact more 

frequently with the myrmecophile parasites than foragers, and prior encounter and 

greater experience in attacking these parasites could cause nurses and mound 

workers to recognize them more rapidly as a threat than foragers and to have a lower 

threshold to initiate aggression. In fact, it is well known that prior fighting experience 

may intensify future aggressive encounters, both in animals in general (Hsu et al. 2006) 

and more specifically in ants (Van Wilgenburg et al. 2010). Finally, a third explanation 

of the contrasting patterns in aggression that we found is that foragers would incur 

significant switching costs if they had to regularly switch to carrying out defensive tasks 

inside the colony, owing to the travel time between different task locations, or energy 

costs owing to shifts in behavioural state (Duarte et al. 2011, Goldsby et al. 2012). 

Indeed, previous studies suggested that wood ant foragers do not readily switch to 

other tasks and specialize purely in foraging over extended periods of time (Rosengren 

and Fortelius 1986, Parmentier et al. 2012). In combination, it is clear that these three 

factors make intranidal nurse workers ideally suited to perform non-risky defence 

strategies against intranidal myrmecophiles. Intranidal workers over the complete 
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worker size range have higher aggression propensities than similar-sized foragers. 

Wood ant nurses inside the nest are on average smaller than workers foraging, 

especially at large distances, outside the nest (Higashi 1974, Herbers 1979, 

Parmentier 2010). As a result, the most optimal size and task cohorts to deter the 

parasites are represented inside the nest. Large nurses in the colony are outnumbered 

by small nurses. However, these large nurses are still more aggressive than similarly 

sized foragers. So apparently this ‘task’ effect enhances the low defence capabilities 

of large workers engaged in intranidal defence. 

Our results demonstrate that nest defence specialization in wood ants is surprisingly 

context-dependent. Whereas large foragers are specialized in territorial defence and 

in defence against other external threats, small nurse workers appear most efficient in 

chasing away small parasites inside the nest. Earlier, a similar context-dependent 

specialization in aggression has been demonstrated in leafcutter ants. For example, in 

the leafcutter ant Atta laevigata, large workers attack vertebrate predators but small 

workers are recruited to defend their territory against rival ant colonies, presumably 

because of their better ergonomic size match (Whitehouse and Jaffe 1996). Small 

workers of the leafcutter ant Atta colombica hitchhiking on leaves are also specialized 

in defending, and ergonomically better suited to protect workers carrying leaves 

against small parasitic flies and reducing bacterial and fungal loads on the leaves 

(Feener and Moss 1990, Griffiths and Hughes 2010). Finally, small workers of the 

leafcutter ant Acromyrmex octospinosus are specialized in the removal of spores of 

parasitic Escovopsis fungus that colonizes their mutualistic fungus gardens, while large 

workers rather remove large pieces of Escovopsis-infected fungus garden 

(Abramowski et al. 2011). These findings and our results suggest that small ant 

workers (especially small nurses) are vital in some aspects of nest defence and are 

key in the defence against ‘small’ threats such as small myrmecophiles, bacteria and 

fungus spores in the colony. We believe that this context-dependent aggression 

response may be widespread among polymorphic social insects and could be a 

contributing factor for the evolution and maintenance of adaptive size polymorphism in 

these insects (Oster and Wilson 1978, Hasegawa 1997, Beshers and Fewell 2001). 

Furthermore, based on our results, it is likely that even in monomorphic social insect 

species, young nurse workers would specialize in intranidal defence, and that the 

presence of parasites would therefore affect the optimal allocation of roles as a function 

of age (Tofilski 2002).  
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Aggression and specialization in defence in RWA workers is highly context-dependent. 

We have shown that small workers inside the nest are best suited to attack intranidal 

parasites, and previous studies reported that large foragers are better suited to defend 

the colony against external threats. This context-dependent specialization in 

aggression can be interpreted in the context of adaptive models of the evolution of task 

specialization and caste polymorphism, and is argued to potentially be one of the key 

factors in promoting and maintaining size or caste polymorphism in both these ants 

and other social insects alike (Oster and Wilson 1978, Hasegawa 1997, Beshers and 

Fewell 2001).  
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ABSTRACT 

 

Living in close association with other organisms has proven to be a widespread and 

successful strategy in nature. Some communities are completely driven by symbiotic 

associations and therefore, intimate relationships among the partners can be 

expected. Here, we analysed in-depth the food web of a particularly rich community of 

arthropods found in strict association with European red wood ants (Formica rufa 

group). We studied the trophic links between different ant-associated myrmecophiles 

and food sources associated with the host ant, but also tested predator-prey links 

among myrmecophiles themselves. Our approach combined direct feeding tests and 

stable carbon and nitrogen isotope analyses for a large number of myrmecophiles. The 

results of the direct feeding tests reveal a complex food web. Most myrmecophiles 

were found to parasitize on ant brood. Moreover, we encountered multiple trophic 

predator-prey links among the myrmecophiles. The results of the stable isotope 

analyses complement these findings and indicate the existence of multiple trophic 

levels and trophic isotopic niche compartmentalization. δ15N values were strongly 

correlated with the trophic levels based on the direct tests, reflecting that δ15N values 

of myrmecophiles increased with higher trophic levels. This strong correlation 

underlines the strength of stable isotopes as a powerful tool to assess trophic levels. 

In addition, the stable isotope data suggest that most species only facultatively prey 

on ant brood. The presence of numerous trophic interactions among symbionts clearly 

contrasts with the traditional view of social insects nests as offering an enemy-free 

space for symbionts. Interestingly, the ant host can indirectly benefit from these 

interactions because brood predators are also preyed upon by other myrmecophiles. 

Overall, this study provides unique insights into the complex interactions in a small 

symbiont microcosm system and suggests that the interactions between host and 

symbiont might be mediated by other symbionts in the same community.  

 

 

 

 

 

 



C H A P T E R  4  | 79 
  

 
 

INTRODUCTION 

A highly diverse range of organisms lives in intimate association or symbiosis with 

other organisms (Paracer and Ahmadjian 2000). This association can take different 

forms - ranging from commensalism, where one partner benefits without costs for the 

other, to mutualism where both partners take benefits of the association, and 

parasitism, where one partner is exploited for the benefit of the other. The 

establishment of symbioses is thought to have driven the evolution of species, 

communities and even entire ecosystems (Paracer and Ahmadjian 2000). Some of 

those symbiont communities are microcosms centered on one keystone species which 

provides resources, shelter and habitat to associated species. Animals that live in such 

systems are known as inquilines. Typical examples of such so-called “inquiline” 

communities are the fauna associated with the water filled leaves of pitcher plants and 

bromeliads, and fauna associated with insect-induced galls (Sanver and Hawkins 

2000, Kitching 2001, Srivastava et al. 2004). Such small, delineated microcosms have 

been considered as models to study ecological and evolutionary processes (Srivastava 

et al. 2004). In particular, the unravelling of trophic relationships in these communities 

has advanced our understanding of local ecosystem dynamics and structuring 

(Kitching 2001, Kneitel and Miller 2002, Trzcinski et al. 2005).  

Nests of social insects can also be inhabited by a diverse community of inquiline guest 

species (Donisthorpe 1927, Kistner 1979, Hölldobler and Wilson 1990, Kronauer and 

Pierce 2011). These inquilines have developed mechanisms to circumvent colony 

aggression and thrive in a unique habitat characterized by ideal homeostatic conditions 

and a constant supply of food (Hölldobler and Wilson 1990). Moreover, it has been 

suggested that such nests provide an enemy-free space with low predation-pressure 

from the perspective of the associate (Kronauer and Pierce 2011). In spite of the 

taxonomic and life strategy diversity of species strictly associated with social insect 

nests and their potential use as model systems to study ecosystem and evolutionary 

processes (chapter 2: Parmentier et al. 2015a), little is known about the local 

community dynamics and interactions between symbiont-host and among symbionts 

themselves. Food web studies, in particular, are essential to understand local 

community functioning and its dynamics. It is well known that many social insect 

inquilines prey on brood or steal food from their host (Hölldobler and Wilson 1990, von 

Beeren et al. 2010, Hovestadt et al. 2012). Witte et al. (2008) demonstrated different 

strategies in the myrmecophile community associated with the army ant Leptogenys 

distinguenda ranging from kleptoparasites that steal food from the ant host to 
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detrivores and brood predators. However, most studies only report the trophic 

interaction between the host and a single inquiline. In addition, (feeding) interactions 

among social insect symbionts have been even less studied, or at most been described 

based on occasional observations of single attacks (Donisthorpe 1927). De Visser et 

al. (2008) provides a rare case study using natural abundance stable isotope 

signatures to describe food web interactions among spiders and other invertebrates 

found in termitaria, but the reported species might not all have been strict associates 

of termites.  

Our knowledge of the trophic interactions in inquiline microcosms associated with 

social insects is thus very fragmentary. The aim of the present study was to carry out 

an integrated study of the trophic interactions among red wood ant associates based 

on carbon (C) and nitrogen (N) stable isotope analyses as well as direct preference 

tests. This results in the first fine-scale study of the effect of ant associates on host 

fitness, and their effect on community functioning. 

 

MATERIAL AND METHODS 

Red wood ants and the myrmecophile community 

Red wood ants (RWAs) are known to support a diverse group of associated arthropods 

in their nests (chapter 1: Parmentier et al. 2014). Some of these are strictly confined to 

ant nests and are thus considered obligate myrmecophiles. This group mainly consists 

of beetles, and especially rove beetles, but spiders, flies, hemipterans, an isopod and 

a springtail are also often reported. Others only live facultatively in association with 

RWAs and are typical soil organisms mostly found in the absence of ants (e.g. the 

common isopod Porcellio scaber) (chapter 1: Parmentier et al. 2014). The RWA 

species Formica polyctena and Formica rufa have a similar colonial organization in the 

fragmented woods of Flanders (Belgium) and they are even known to hybridize (Seifert 

et al. 2010, chapter 2: Parmentier et al. 2015a. The associated myrmecophile 

community is likely to be identical in both species and is highly similar to other 

European RWAs (chapter 2: Parmentier et al. 2015a). 

Experiments 

Our approach combines direct feeding tests with stable isotope analyses, which both 

can explain different attributes of a food web. 
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Inference of trophic interactions via direct feeding tests 

Here we aimed to test directly trophic links in the RWA myrmecophiles community. 

This is a rather time-consuming technique, which strength depends on the number of 

food sources tested. With this technique we can determine potential trophic 

interactions and estimate the number of trophic levels, but we cannot define the relative 

importance of the trophic interactions.  

Myrmecophiles for this experiment were collected in several nests of five RWA 

populations (West-Vleteren, De Haan, Roksem, Aartrijke, Beernem, description see 

chapter 2: Parmentier et al. 2015a) in Western Flanders, Belgium and in Boeschepe, 

France from December 2012 to April 2015. We took nest material out of different parts 

of the nest (outer layer mound, central part mound, earth nest under mound). 

Myrmecophiles were subsequently collected by spreading out this nest material on a 

large white tray in the field. Ants, their brood and nest material were gently placed back 

in the nest after collecting myrmecophiles. Tested organisms originate from both F. 

polyctena and F. rufa colonies. During tests, host species origin was not accounted 

for, because all tested myrmecophiles have been found in nests of both ant species. 

Hence, trophic relations were assumed to be similar in both F. polyctena and F. rufa 

mounds.  

We offered different food sources to myrmecophiles associated with RWAs, analysing 

both trophic sources associated with the RWA host (eggs, larvae, pupae, dead ants, 

trophallaxis, ant prey), and studying the predator-prey relationships among symbionts 

themselves. We used nine staphylinid beetle species (Quedius brevis, Dinarda 

maerkelii, Pella humeralis, Thiasophila angulata, Notothecta flavipes, Lyprocorrche 

anceps, Amidobia talpa, Leptacinus formicetorum, Stenus aterrimus), two spiders 

(Thyreosthenius biovatus, Mastigusa arietina), one isopod (Platyarthrus 

hoffmannseggii), one springtail (Cyphoderus albinus), and three non-staphylinid beetle 

species: Clytra quadripunctata (Coleoptera: Chrysomelidae), Monotoma angusticollis 

(Coleoptera: Monotomidae) and Myrmetes paykulli (Coleoptera: Histeridae). We used 

the adult stage for all species, except for C. quadripuncta where the late instar larvae 

were tested, since the adults of the latter leave the nest directly after emergence and 

live on plants in the vicinity of wood ant nests where they mate and drop their eggs 

near the host nest. The larvae live permanently in the nest and make a case where 

they can hide (Donisthorpe 1927). All species used in the direct feeding tests are 

strictly associated with ants (Donisthorpe 1927, chapter 1: Parmentier et al. 2014). 
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First, feeding preference was tested directly by offering food sources associated with 

wood ants: RWA eggs, RWA larvae, RWA pupae, dead RWA workers, trophallaxis and 

ant prey. Engagement of myrmecophiles in trophallaxis, which is the transfer of 

regurgitated food among workers in social insects, was tested by offering 15 RWA 

workers sugar water (30%) stained with blue colorant (E131, i.e. Patent Blue V, Cook 

and Bake). After 6 h, these workers were placed in a darkened arena with 15 starved 

workers of the same colony to promote trophallaxis among workers. Myrmecophiles 

found in the same mound of the workers were then added and their gut was dissected 

after 48 h. The presence of blue colorant then indicates that the myrmecophile 

engaged directly in trophallaxis or stole a sugar droplet of two workers in trophallaxis. 

In some tests, dead workers were found. To rule out the possibility that the 

myrmecophile obtained the blue colorant by devouring the ant gut directly, we placed 

dead ant workers with several myrmecophiles in an arena, but none of the guts of the 

myrmecophiles were found to colour blue. Diptera larvae are an important part of the 

diet of wood ants (Punttila et al. 2004). Dead larvae of Phaenicia sericata were 

therefore chosen as a proxy for ant prey brought into the ant nests. Secondly, living 

myrmecophiles co-inhabiting with the focal myrmecophile were offered and 

acceptance tested: C. albinus, young P. hoffmannseggii isopods, M. angusticollis, A. 

talpa, T. biovatus spiderlings, rove beetle larvae (Aleocharine subfamily), Ptiliidae and 

mites found in the mounds. We lumped the obligate myrmecophile Ptenidium 

formicetorum and the facultative myrmecophiles of the genus Acrotrichis together in 

Ptiliidae prey. The staphylinid A. talpa was selected because it is the smallest and 

slowest staphylinid living in wood ant nests and therefore has the highest potential 

among staphylinids to be a prey item. 

Food items were offered to a myrmecophile in snap lid vials filled with a ca. 1 cm bottom 

of moist plaster of Paris. The behaviour of myrmecophiles, except for C. albinus and 

P. hoffmannseggii, towards dead ant workers and ant prey was recorded in a darkened 

room with a camera (SONY HDR-XR550VE) equipped with night vision during one 

hour. Because of the low contrast between the whitish C. albinus and P. 

hoffmannseggii and the white plaster, we studied behaviour towards dead ant workers 

and ant prey for C. albinus and P. hoffmannseggii directly during one hour under red 

light instead of using the camera. Food was accepted if the myrmecophile was seen 

licking, dragging or biting the maggot or dead worker for at least 30 s. Trophallaxis was 

tested as described above. For the potential myrmecophilous prey, RWA eggs, larvae 

and pupae, we checked after 24 h if they were eaten. In each trial, RWA eggs and C. 

albinus individuals were offered per five, all other food items were given individually. 
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For most myrmecophiles, we also tested egg predation in presence of five workers. 

We added five nurses (workers that transported brood when opening the nest) and five 

eggs in similar vials that we used in the other tests. Workers readily started to lick and 

transport the eggs. 

 During the tests, only one dead intact myrmecophile prey was encountered, and 

therefore we eliminated this observation for further interpretation to avoid the chance 

that this prey just died naturally during the test. Some myrmecophiles (e.g. the isopod 

P. hoffmannseggii) were given no living prey, due to their obvious life style as detritus 

feeder or scavenger.  

The acceptance of a food source was tested with different individuals for each species. 

The number of replicates and the proportion of replicates accepted are given in Table 

4.1. Some individuals were used again to test acceptance for a different food source, 

but trials for a particular food source were never repeated with the same individual. 

Myrmecophiles were starved for one day prior to the tests. Myrmecophiles were 

recorded in RWA mounds throughout all seasons, except for P. humeralis that was 

only recorded in winter and Aleocharine larvae that were not found in winter. Ant brood 

can be found most of the year (even in winter we observed eggs), but the amount of 

brood peaks in spring and summer. Given that most sources and consumers are 

present throughout the year, we expect that most trophic interactions described here 

take place throughout the year, except for winter when most species are hibernating. 

Nonetheless, the strength of such interactions, will vary depending on the availability 

of food sources and the needs of consumers throughout the year. The tested 

myrmecophiles have not only a temporal overlap in the mound, but also a overlap in 

their distribution within the nest. We recently found that the tested myrmecophiles have 

some preference for particular parts of the nest, but they also occur in the other parts 

in somewhat lower densities (chapter 5). Therefore all myrmecophiles could occur 

together and interact with each other at some time and place in the nest. 

Inference of trophic interactions through stable isotope analysis 

The combined analysis of ratios of 15N/14N and 13C/12C is a widely used tool in food 

web studies (Ponsard and Arditi 2000, Post 2002). It gives a rapid characterization of 

food web relationships and is able to constrain sources supporting food webs. It 

integrates unknown food sources and allows to estimate the importance of a food 

source in the diet of an animal (Phillips et al. 2014). In contrast with direct feeding tests, 

direct trophic interactions between two species are hard to estimate in complex food 
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webs. The isotope ratios are expressed as δ units and give the deviation in parts per 

thousand from international standards: 

δ 13C or δ 15N = (Rsample/Rstandard - 1) x 1000 [‰] 

R = 13C/12C for δ13C and R= 15N/14N for δ15N. Depending on the system and the tissue, 

a consumer tends to be enriched in 15N relative to its diet, leading to a stepwise 

increase in δ15N across trophic levels, with a reported average increase of 3.4 ‰ (Post 

2002). Therefore, δ15N can be used to estimate relative trophic positions or food chain 

lengths. The ratio of 13C/12C propagates through food web with little enrichment, but 

can vary substantially between different primary producers (e.g. in terrestrial sytems 

between C3 vs. C4 plants) (DeNiro and Epstein 1978, Post 2002). δ13C can thus be 

used to infer primary sources supporting food webs.  

As described above, most interactions, tested in the direct feeding tests, are expected 

to take place most of the year, but their strength can vary temporally which would be 

reflected in stable isotope analysis. To avoid this seasonal bias, we took samples for 

isotope analysis only in summer (2013-2014), when most consumers and sources are 

at their peak of abundance.  

Individuals for isotope analysis had not been used previously in the direct tests. After 

collection, samples were directly stored in the freezer until isotope analysis. Stable 

isotope signatures of all species used in the direct preference tests were analysed, 

except for P. humeralis which was only found in winter. In addition, we sampled three 

additional obligate myrmecophiles (Emphylus glaber, Hypoaspis oophila, Monotoma 

conicicollis), the facultative myrmecophilous isopod Porcellio scaber, the host ant (F. 

rufa: workers, eggs, larvae) and organic nest material of the mound. E. glaber and H. 

oophila were only analysed in this experiment, because too few individuals were found 

to run direct tests in parallel. M. conicicollis was not used in the direct tests, because 

it is very similar with M. angusticollis. Identical direct, trophic interactions are hence 

expected. H. oophila is a mite species that lives among the egg piles of RWAs. They 

do no puncture eggs, but appear to live from secretions on the eggs (Donisthorpe 

1927). Because of their small size, 20 eggs, 10 C. albinus, 10 H. oophila and 5 A. 

individuals were pooled per sample. The number of replicates per species can be found 

in the legend of Fig. 4.2. In contrast with the samples for the direct tests that were 

collected in several nests in five RWA populations, we took the majority of samples for 

isotope analysis in a single F. rufa colony consisting of 3 adjacent mounds in the West-

Vleteren population (nest A, description see chapter 2: Parmentier et al. 2015a). M. 
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arietina was collected in a RWA nest in F. polyctena colonies in De Haan and Beernem 

(nest B, C). E. glaber was collected in a F. rufa colony in Boeschepe, France (nest D). 

Eggs and H. oophila were collected in nest A and D.  

We weighed 0.1 to 1 mg of dry, homogenized material per sample into Sn cups and 

analysed for δ13C and δ15N on a Thermo Flash HT/EA elemental analyzer coupled to 

a Thermo Delta V Advantage IRMS with a Conflo IV interface, and data were corrected 

using an in-house calibrated Leucine standard and the certified IAEA-600 (caffeine). 

Reproducibility of standards within each batch were better than 0.1 ‰ for both δ13C 

and δ15N. 

Tissue composition can bias δ13C values, as lipids are generally depleted in 13C 

compared to proteins and carbohydrates. We therefore applied the lipid-correction 

model proposed by McConnaughey and McRoy (1979) to normalize our δ13C data. 

First the lipid content L of the sample is calculated from the sample C:N ratio 

(mg:mg)(RC:N): 

L = 93/[1 + (0.246(RC:N) - 0.775)-1] 

The lipid-normalized δ13C’ is calculated from the measured value of the sample (δ13C) 

and L: 

δ13C’= δ13C + D[I + 3.90/(1 + 287/L)] 

D refers to the isotopic difference between protein and lipid (assumed to be 6‰) and I 

is a constant (I = -0.207). 

Stable isotope ratios of soil and litter and associated food webs can vary on small 

spatial scales (Ponsard and Arditi 2000). As a result, values of myrmecophiles from 

nest B, C and D are not comparable with those of nest A. Nest material of the four 

nests was used as a baseline of the respective food webs. Signatures of the 

myrmecophiles of nest B, C and D were rescaled to values relative to nest material of 

nest A by adding the difference between their signatures and the nest material of their 

nest to the values of the nest material of nest A. 

Statistical analyses 

All analyses were carried out in R, version 3.0.1 (R Core Team 2014). 

In order to reconstruct the food web graphically based on our direct feeding tests, we 

used package sandwich. Food web parameters were also calculated with this package. 
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We tested with an ANOVA whether species differed in their δ15N signature. Preliminary 

data analyses and Levene’s test indicated that species were characterized by unequal 

variances. Therefore, we used the White-correction which implements a correction for 

heteroscedasticity (White 1980). Reported standard errors are robust and corrected 

for this heteroscedasticity. Then, we compared species pair wise using Games Howell 

Post Hoc Tests which can deal with unequal variances (Games and Howell 1976). 

Similar analyses were performed for δ13C data. These analyses were carried out using 

packages car and lmtest.  

Trophic levels calculated from the direct tests were correlated with δ15N-values using 

a Pearson’s product-moment correlation. 

 

RESULTS 

Inference of trophic interactions via direct feedin g tests 

Table 4.1 summarizes the results of the direct preference tests. Species were broadly 

categorized in two trophic niches: scavengers that prey on ant brood and consume 

other ant-associated food sources and active hunters that prey on other living 

myrmecophiles. Brood predation was widespread (Table 4.1). With the exception of 

the beetle S. aterrimus and the springtail C. albinus, all myrmecophiles were found to 

prey on the host ant eggs. Ants were not efficient in deterring egg predators. Species 

that preyed on eggs without ants preyed at the same or somewhat lower (T. angulata) 

rate on eggs in presence of ants. However, we should need much more replicates to 

test whether there is a statistical difference in egg predation. With few exceptions (L. 

anceps, S. aterrimus, C. albinus and P. hoffmannseggii), a large fraction of the 

community accepted ant larvae. Pupae were not attacked, except for one replicate of 

Q. brevis. Almost all myrmecophile species acted as kleptoparasites by preying on ant 

prey. A large part of the myrmecophiles also fed on corpses of ant workers. The beetle 

D. maerkelii was shown to be the only specialist that engaged in trophallaxis (Table 

4.1).  

The two spiders, T. biovatus and M. arietina, were specialist predators of other small 

myrmecophile prey (C. albinus, mites, beetle larvae, spiderlings, isopod, Ptiliidae). T. 

biovatus preyed cannibalistically on small conspecific spiderlings. S. aterrimus was a 

specialist hunter of the springtail C. albinus. This genus is known to have a specialized 

labium that can be projected to catch springtails (Scmitz 1943). S. aterrimus also  



 

 
 

Table 4.1. Matrix with trophic interactions in RWA mounds. Myrmecophile species in rows indicate consumers. Trophic sources directly associated with ants and myrmecophile prey offered are represented in the 
columns. Fraction in a cell corresponds to the number of trials where the food source was accepted out of total trials. Different individuals were used for the trials of a particular food source. Cells with consumption 
are grey coloured. The myrmecophiles in the groups “other beetles”, “Collembola” and “Isopoda” were given no living, myrmecophilous prey, due to their obvious life style as detritus feeder or scavenger. Third column 
indicates trophic niche based on this table: a scavenger (S) mainly feeds on ant-associated food, an active hunter (A) preys on living myrmecophiles. A category is set in brackets when evidence is poor or when the 
other trophic niche is likely more important. 
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ROVE 
BEETLES 

T. angulata S (+ A) 40/41 7/10 8/8 0/5 4/9 4/5 0/15  0/7 0/6 0/5 0/6 0/5 1/6 0/5 0/6 

N. flavipes S 22/23 1/2  5/5 0/5 5/5 5/8 0/6  0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 

L. formicetorum S + A 5/8  3/5 0/5 4/5 1/5 0/5  1/5 0/5 0/5 0/5 0/5 4/5 0/5 0/6 

L. anceps  S (+ A) 18/35  0/5 0/5 3/7 3/6 0/7  0/6 0/6 0/5 0/5 0/5 2/5 0/5 0/5 

A. talpa S 4/22 1/3 4/5 0/5 3/8 4/5 0/9  0/5 0/5 0/5 0/5 0/5 0/5 0/8 0/13 

D. maerkelii S 11/21 8/21 2/5 0/5 4/7 4/5 6/6  0/5 0/5 0/5 0/5 0/5 0/6 0/5 0/5 

P. humeralis S (+ A)     4/4 5/6   0/5 1/5 0/5 0/4   0/5 0/6 

Q. brevis S + A 13/14 13/15 5/5 1/5 6/6 0/5 0/5  0/7 2/7 0/6 1/7 4/5 4/5 5/7 4/5 

S. aterrimus A 0/22 0/7 0/5 0/5 1/7 0/7 0/5  5/6 0/5 0/5 0/5 0/5 0/8 0/5 2/6 

SPIDERS T. biovatus A + (S) 8/21 10/20 2/5 0/6 1/9 0/5 0/5  6/7 0/5 0/8 0/5 0/8 6/7 3/5 3/5 

 M. arietina A + (S) 1/9  1/3 0/5 0/8 0/5 0/5  4/5 2/4 0/6 0/5 3/6 4/6 2/6 4/6 

 C. quadripunctata S 16/24 6/9 3/7 0/5 1/5 1/5 0/5  
(*) We regularly observed cannibalism among Aleocharinae larvae 

 

 

OTHER 
BEETLES M. paykulli S 14/21 7/12 3/5 0/5 3/8 6/8 0/9 

 

 M. angusticollis S 17/25 2/4 1/6 0/5 5/5 1/6 0/8  

COLLEMBOLA  C. albinus S 0/12 0/10 0/5 0/5 3/10 0/7 0/5  

ISOPODA P. hoffmannseggii S 12/20 2/7 0/7 0/5 0/5 0/5 0/12  
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Figure 4.1. Graphical representation of the trophic interactions in the RWA myrmecophile community (based on Table 4.1). 
Trophic level is based on averaged chain length, which is 1 plus the average chain length of all paths from each node to a basal 
species). Black links refer to trophic pathways were the source was associated with the host ants. Grey links refer to predator - 
prey interactions between myrmecophile species. 

preyed on mites. Adult beetles (M. angusticollis and A. talpa) were not eaten, except 

for one registered attack of Q. brevis on M. angusticollis. Q. brevis is a very generalist 

predator, feeding on most other myrmecophiles excluding the quick springtail C. 

albinus. Rove beetle larvae were also preyed on by adult rove beetle of three species. 

Additionally we regularly observed that Aleocharine larvae preyed cannibalistically on 

each other (Table 4.1). The trophic interactions described above also occur in more 

natural conditions in presence of ants and nest material. Rove beetles were often 

observed feeding on maggots in lab ant nests. Initially we stored myrmecophiles, a 

high number of ants and some nest material, that we had collected in the field, in 1 L 

pots. Then we repeatedly observed that the initial large numbers of C. albinus and 

Aleocharine larvae were dramatically reduced the following day. Most of the prey-

predator interactions were also observed in lab nests with ants. The trophic interactions 

reported in Table 4.1 are graphically presented by a food web using the cheddar 

package in R in Fig. 4.1. Trophic levels of the nodes are based on averaged chain 

length, which is 1 plus the average chain length of all paths from each node to a basal 

species. The food web consisted of 96 links connecting 24 nodes, resulting in a link 
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density of 4 and a connectance of 0.17. The largest chain length connected five nodes, 

the mean chain length was 3.26.  

Inference of trophic interactions through stable is otope analysis 

Components of the myrmecophile food web associated with RWA differed significantly 

in δ15N values (ANOVA, F23,177 = 52.06, P < 0.0001) which ranged from -1.7‰ ± 0.4‰ 

SE in nest material to 6.7‰ ± 0.3‰ SE in the rove beetle L. formicetorum (Fig. 4.2). 

We found a continuum in δ15N values across groups of myrmecophiles, rather than 

consistent stepwise increases, which woul have corresponded to distinct trophic levels. 

The baseline δ15N value of this study was found in nest material (-1.7‰ ± 0.4‰ SE). 

Different compartments of the food web had significant differences in δ13C (ANOVA, 

F23,177 = 21.83, P < 0.0001), the latter being lowest for H. oophila (-26.4‰ ± 0.5‰ SE) 

and highest for M. conicicollis (-22.7‰ ± 0.2‰ SE) (Fig. 4.2). Some species have 

significantly lower or higher δ13C values than organic nest material (-25.2‰ ± 0.1‰ 

SE), which was the presumed basal resource of the food web. The relatively high 

variance in δ13C hence indicates the presence of multiple basal resources (Fig. 4.2, 

Table 4.2), There were clear differences (cf. Post Hoc Tests Table 4.2) among several 

myrmecophiles, even with similar δ15N values. A good example of this trophic niche 

separation can be found in the congeneric species M. angusticollis and M. conicicollis 

(Fig. 4.2, Table 4.2). 

The facultative myrmecophilous isopod P. scaber was the least enriched in 15N, with 

an average δ15N of 1.6‰ ± 0.3‰ SE. Interestingly, the obligate myrmecophilous 

isopod P. hoffmannseggii was considerably more enriched in 15N compared with P. 

scaber (δ15N of 5.4‰ ± 0.1‰ SE, Games Howell Post Hoc Test P < 0.0001). δ15N 

values of ant workers (mean ± SE = 2.2‰ ± 0.1‰), larvae (mean ± SE = 2.5‰ ± 0.1‰) 

and eggs (mean ± SE = 2.0‰ ± 0.2‰) were relatively low compared to most 

myrmecophiles. Rove beetles’ δ15N values spanned a gradient from 2.6‰ to 6.7‰. 

Some species (N. flavipes, A. talpa, L. anceps, D. maerkelii) which preyed on ant brood 

in the direct tests, showed δ15N values (2.6 to 3.2 ‰) only slightly higher than ant eggs 

and larvae.  
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Figure 4.2. Isotopic signatures for myrmecophiles associated with RWAs. Means and SEs (corrected for heteroscedasticity) for 
δ13C and δ15N (‰) are displayed for L. formicetorum (n = 10), M. paykulli (n = 6), T. biovatus (n = 11), M. arietina (n = 5), Q. brevis 
(n = 6), P. hoff mannseggi (n = 18), S. aterrimus (n = 12), C. quadripunctata adult (n = 3), T. angulata (n = 12), H. oophila (npooled 
= 3), C. quadripunctata larva (n = 9), M. angusticollis (n = 11), E. glaber (n = 4), D. maerkelii (n = 9), L. anceps (n = 12), M. 
conicicollis (n = 13), A. talpa (npooled = 10), C. albinus (npooled = 4), N. flavipes (n = 10), F. rufa larva (n = 3), F. rufa worker (n = 10), 
F. rufa egg (npooled = 4),P. scaber (n = 8), nest material (n = 8). Symbols of species that were tested in the direct feeding tests are 
filled following a trophic level colour gradient as calculated in Fig. 4.1. 

Myrmecophiles that preyed on other myrmecophiles in the direct tests showed, as 

expected, relatively high δ15N signatures (L. formicetorum 6.7‰, T. biovatus 5.9‰, M. 

arietina 5.9‰, Q. brevis 5.7‰, S. aterrimus 5.2‰). The histerid beetle M. paykulli was 

also considerably enriched in 15N (δ15N: 5.9‰). Species with relatively low δ15N values 

(N. flavipes 2.6‰, C. albinus 2.7‰, A. talpa 2.7‰, M. conicicollis 3.0‰, L. anceps 

3.0‰ E. glaber 3.4‰, M. angusticollis 3.6‰, C. quadripunctata 4.0‰, T. angulata 
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4.2‰) still have higher 15N-enrichments than expected for detrivores feeding only on 

nest material (cfr P. scaber with δ15N = 1.6‰ and an enrichment of 3.3‰ relative to 

nest material).The mite H. oophila is reported to feed on ant egg secretions 

(Donisthorpe 1927). It is considerably enriched in 15N (δ15N: 4.1‰) by 2.1‰ compared 

with ant eggs (Games Howell Post Hoc, P = 0.006) and showed similar 13C values to 

ant eggs. The δ15N-values of the different species within our community were highly 

correlated with the trophic level (average chain length) calculated from our direct tests 

(Table 4.1, Fig. 4.1) (Pearson's product-moment correlation = 0.75, P < 0.001). Data 

points in the stable isotope plot (Fig. 4.2) are colored in accordance with trophic level 

of the direct tests.  

 

Table 4.2. Species means of δ15N and δ13C values (‰) and corresponding SEs (corrected for heteroscedasticity). Species with 
no letters in common are significant different at the α = 0.05 level (Games-Howell Post Hoc Test). 

 

DISCUSSION 

We found in the myrmecophile community associated with red wood ants (RWAs) 

multiple trophic interactions with myrmecophiles feeding on ant-associated food 

sources or preying on other myrmecophiles. This results in a complex food web 

spanning different trophic levels. Interestingly, the trophic levels of our direct 

preference tests were highly correlated with δ15N-values, indicating that species with a 

higher trophic level have higher δ15N values.  

                δ15N         δ13C 
                Species Mean  SE         Species Mean  SE 
                              
a                Leptacinus formicetorum 6.7 0.3       f  Monotoma conicocollis -22.7 0.2 
a b c d             Thyreosthenius biovatus 5.9 0.6      e f  Porcellio scaber -23.2 0.3 
a b c d e f           Myrmetes paykulli 5.9 0.6     de   Platyarthrus hoffmannseggii -24.3 0.1 
a b c d e f g h i j k l     Mastigusa arietina 5.9 0.7  a b c de f  Monotoma angusticollis -24.5 0.5 
a b c d             Quedius brevis 5.7 0.4  a b c de f  Formica rufa larva -24.6 0.4 
a b               Platyarthrus hoffmannseggii 5.4 0.1  a b c de f  Mastigusa arietina -24.8 0.7 
a b c              Stenus aterrimus 5.2 0.2  a b      nest material -25.2 0.1 
a b c d e f g h i j k l m n   Clytra quadripunctata adult 5.2 0.6   b      Lyprocorrhe anceps -25.2 0.1 
  c d e f g h         Thiasophila angulata 4.2 0.2   b      Amidobia talpa -25.3 0.1 
   d e  g          Hypoaspis oophila 4.1 0.1  a b c de   Quedius brevis -25.3 0.3 
  c d e f g h i        Clytra quadripunctata larva 4.0 0.3  a b      Leptacinus formicetorum -25.4 0.1 
a b c d e f g h i j k l m n   Monotoma angusticollis 3.6 0.8  a b c     Notothecta flavipes -25.5 0.1 
    e f g h i j       Emphylus glaber 3.4 0.2  a b c d   Formica rufa egg -25.6 0.2 
     f  h i j       Dinarda maerkelii 3.2 0.2  a b c     Thyreosthenius biovatus -25.6 0.2 
     f  h i j k  m    Lyprocorrhe anceps 3.0 0.2  a  c     Dinarda maerkelii -25.7 0.1 
 b c d e f g h i j k l m n   Monotoma conicocollis 3.0 0.7  a  c     Formica rufa worker -25.8 0.1 
        i j k l m n   Amidobia talpa 2.7 0.2  a  c     Clytra quadripunctata larva -25.8 0.1 
      g h i j k l m n   Cyphoderus albinus 2.7 0.3  a b c     Cyphoderus albinus -26.1 0.2 
      g h i j k l m n   Notothecta flavipes 2.6 0.5  a b c     Thiasophila angulata -26.1 0.2 
         j k l m n   Formica rufa larva 2.5 0.1  a b c     Myrmetes paykulli -26.2 0.2 
           l  n   Formica rufa worker 2.2 0.1  a b c     Clytra quadripunctata adult -26.2 0.2 
          k l m n   Formica rufa egg 2.0 0.2    c     Stenus aterrimus -26.3 0.2 
            m n   Porcellio scaber 1.6 0.3  a b c     Emphylus glaber -26.4 0.3 
              o  nest material -1.7 0.4  a b c de   Hypoaspis oophila -26.4 0.5 
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Social insects are exposed to a diverse group of parasites ranging from bacteria and 

viruses to arthropods that threaten colony functioning (Schmid-Hempel 1998). They 

can attack all stages of their host, i.e. eggs, larvae, pupae and adult workers. There is 

a growing body of literature which shows the prevalence of parasites that feed on brood 

in social insect colonies (Hölldobler and Wilson 1990, Witte et al. 2008, von Beeren et 

al. 2010) and there are even indications that this results in an alteration of host life 

strategies (Hovestadt et al. 2012). Our study demonstrates that brood predation is a 

very widespread strategy in communities of social insect associates: except for two 

species, all symbionts in this study were found to prey on ant eggs and/or larvae. Even 

species previously described as commensals, such as the isopod P. hoffmannseggii 

and the larvae of C. quadripunctata, readily accepted this food source. The displayed 

trophic interactions could be affected by the presence of ants. However ants were not 

efficient in protecting eggs against most brood predators. The strongest deterring effect 

of ants on myrmecophilous consumers should be expected here, because of the high 

value of brood for the colony (Hölldobler and Wilson 1990). Therefore we can assume 

that they will also have a rather limited effect on other trophic interactions in the nest. 

This is further confirmed by observations in lab nests with large numbers of ants, where 

most interactions were observed. Interestingly, the obligate myrmecophilous isopod P. 

hoffmannseggii was considerably more enriched in 15N compared with the facultative, 

myrmecophilous isopod P. scaber. Assuming an average enrichment of 3.4‰ per 

trophic level, it appears that P. scaber mainly feeds on nest material, whereas P. 

hoffmannseggii might specialize in brood parasitism. We only integrated one 

facultative myrmecophile in this study. But we could expect that also for other 

myrmecophiles, the obligate counterpart likely has got more adaptations and gets 

easier access to richer food sources compared with the facultative counterpart. We 

found, however, that many of the brood parasitic symbionts were only slightly enriched 

in 15N compared with ant brood, suggesting that ant brood may not form the bulk of 

their diet. This finding was confirmed by the wide variation in δ13C signatures in 

different myrmecophiles (Fig. 4.2). Some species might be deterred by the ants and 

lower their brood predation in the presence of ants (cf. chapter 3: Parmentier et al. 

2015b). A potential preference for other food sources or the variability in 15N 

enrichment could also explain the relative low enrichment in 15N compared with ant 

brood for those species. Pupae and adult workers were not attacked. However, there 

are records of myrmecophiles living outside the nest that specialize in preying on RWA 

workers (chapter 1: Parmentier et al. 2014).  
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In addition to parasitic brood predators, kleptoparasites also impose costs on insect 

colonies by stealing food collected by foragers outside the nest (Breed et al. 2012). 

RWA carry a constant supply of proteinaceous invertebrate prey to their nest which 

are mainly allocated to brood development (Punttila et al. 2004, Mooney and Tillberg 

2005). We found that all beetles as well as the springtail C. albinus fed on ant prey. 

This might be a preferred food source for rove beetles, which often instantly ate the 

prey and in some cases dragged it around. An exception was the rove beetle S. 

aterrimus which only fed on the ant prey in one trial. Two myrmecophilous spiders and 

the ant isopod P. hoffmannseggii were never attracted to dead prey. The main food 

source for RWA colonies, however, is not prey but honeydew collected from aphids 

around the nest (Skinner 1980). These sugar-rich excretions are used by the colony 

as the principal energy source. Foragers returning from aphid colonies, regurgitate this 

honeydew to other workers in the nest in a conditioned behaviour known as trophallaxis 

(Hölldobler and Wilson 1990). The large contribution of honeydew in their diet is 

expressed in the relative low δ15N values akin to what was found in other studies 

(Fiedler et al. 2007, Skinner 2008). A number of myrmecophiles, but also symbionts of 

other social insects, were reported to mimic the behaviour of a begging worker or to 

steal indirectly a droplet of workers in trophallaxis (Hölldobler and Wilson 1990, Ellis et 

al. 2002). This behaviour was also reported for the beetle D. maerkelii (Hölldobler and 

Wilson 1990), one of the focal species in this study. Our results suggest that this 

behaviour is probably restricted to very specialized species, as we recorded it only in 

D. maerkelii. Interestingly, in spite of its relatively large size, this beetle was 

characterized by relative low δ15N values, possibly mirroring the importance of 

honeydew in its diet. 

Symbionts can also act as mutualists when they provide benefits for their partner. For 

example, some symbionts in social insect colonies are known to perform cleaning 

services in the colony and lower fungal infestations (Biani et al. 2009). The large 

amount of organic material and dead ant workers or other cadavers in a warm humid 

RWA nest are potential sources for parasitic fungus infestations. We show that a large 

group of intranidal beetles (the same group that feed on living prey except for S. 

aterrimus and Q. brevis) have the potential to speed up the decomposition of ant 

corpses by feeding on them. Especially the histerid beetle M. piceus was often 

observed licking and biting dead ant workers and was also considerably enriched in 
15N. A particularly important role in this early corpse decomposition and in controlling 

fungi infestations can also be expected from mites (Eickwort 1990), which are the most 

numerous group of myrmecophiles in RWA mounds (Kielczewski and Wisniewski 
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1962). Unfortunately, little is known about their taxonomy, biology and degree of 

association with RWAs (facultative or obligate). 

Ant nests and the surrounding territory are heavily defended and are avoided by 

predators or parasitoids (Hölldobler and Wilson 1990). Myrmecophiles which live in 

association with ants are therefore subjected to lower predation or parasitization risk 

(Kronauer and Pierce 2011), and ant nests and the surrounding territory have thus 

been considered as an enemy-free space, sensu Jeffries and Lawton (1984). It has 

often been postulated that the association with protective ants in and around their nest 

is a key factor in the evolutionary transition to a myrmecophilous life style (Atsatt 1981, 

Pierce and Braby 2002, Kronauer and Pierce 2011). This protective role of ants was 

experimentally demonstrated in honeydew producing homopterans and lycaenid 

caterpillars tended by ants (Pierce et al. 1987, Völkl 1992, Bishop and Bristow 2003). 

In our study, however, we observed a multitude of predator-prey links among the 

myrmecophiles. This contradicts clearly with the classical view of social insect nests 

as an enemy free space from the perspective of the associates (Kronauer and Pierce 

2011). In systems with multiple inquilines, predator-prey interactions among inquilines 

might be as prevalent as in other soil ecosystems, with the key difference being that 

predation pressure is not imposed by regular predators (which would be deterred by 

the presence of ants), but by specialized inquilines that also have integrated in the 

nests of the host. We found that particularly the younger stages (e.g. nymphs, larvae) 

of brood parasites were highly vulnerable to predation by other brood parasites. This 

intra-guild predation of brood parasites is an unexpected benefit for RWAs. 

Populations of those parasites, but also of other inquilines, might be predominantly 

controlled by other inquilines rather than by their host. Indeed, during hours of 

observation, none of the myrmecophiles were killed by their ant host and live unharmed 

in the deepest brood chambers (chapter 3: Parmentier et al. 2015b). This suggests 

that RWAs have little direct control on inquiline populations in contrast with the army 

ant Leptogenys as suggested in Witte et al. (2008).  

The food web in RWA colonies was found to be surprisingly diverse with all species 

data jointly taking up a relatively wide ‘isotope space’ (cf. Layman et al. 2007) 

considering the ecosystem is dominated by terrestrial C3 vegetation. While overlap in 

stable isotope signatures between myrmecophile species occurred, many species 

were found to have distinctly different δ13C and δ15N signatures (Fig. 4.2), suggesting 

they are sufficiently specialized in their dietary habits to represent distinct trophic 

niches. The wide range of δ13C does not support organic nest material as the sole 
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basal food source and indicates that some species at the base of the food web 

consume unsampled resources found in RWA mounds such as bacteria, protozoa 

bark, fungi, algae (Laakso and Setälä 1998, Korganova 2009). However, the 

interpretation of δ13C signatures can be complicated due to variability in trophic 

fractionation or due to selective assimilation of certain components of litter (e.g. 

cellulose, lignin, and starch) characterized by different δ13C values (Pollierer et al. 

2009, Maraun et al. 2011, Klarner et al. 2013). An extra complication in interpreting 

these isotope data, is the fact that the ant mound microcosm is not closed. Indeed, 

food and organic material of different sources is constantly brought to the nests by the 

ants. While a number of isotope mixing models have recently been developed and 

refined to estimate the contribution of different basal food sources to the diet of 

consumers within a food web (cf. Phillips et al. 2014) we did not perform such an 

analysis on our dataset as we feel that adequate sources signatures of potential food 

items which we have missed in our sampling approach are lacking.  

Based on the direct tests we can broadly categorize myrmecophiles as active hunters, 

scavengers or a combination of both. However stable isotopes indicate that trophic 

niches are much more compartmentalized. A striking example is offered by the two 

very similar congeneric species M. angusticollis and M. conicicollis, which have similar 

δ15N values, but are clearly different in δ13C (Table 4.2, Fig. 4.2), suggesting a 

specialization on different food sources (e.g. different types of fungi). A similar isotopic 

niche partitioning was found in several congeneric Mesostigmatid mites (Klarner et al. 

2013). Active hunters, such as the spiders T. biovatus and M. arietina, but also the 

specialized rove beetle S. aterrimus that mainly prey on other living myrmecophiles in 

the direct observation tests, were characterized by high δ15N values. Ant brood, dead 

workers or ant prey is not or only poorly accepted by this group. Secondly, a diverse 

group of species was found to scavenge mainly on ant prey, dead ant workers and ant 

brood. Their δ15N vary from low values comparable to the ant host to relative high 

values. Finally, species such as Q. brevis were found to both scavenge and hunt and 

show intermediate to high δ15N values. A unique feeding niche can be found with the 

mite H. oophila, which lives among wood ant eggs, and for which our stable isotope 

data support the hypothesis that this mite predominantly feeds on egg secretions.  

It should be noted that many soil organisms (e.g. mites, isopods, Collembola, 

earthworms) live facultatively in nests of social insects (Laakso and Setälä 1998, 

chapter 1: Parmentier et al. 2014) and in contrast with true or obligate inquilines, do 

not display any morphological, chemical or behavioural adaptations to their host. 
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Laakso and Setälä (1998) showed that the food web of those facultative associates in 

RWA mounds was highly different compared with the surrounding soil, consisting of 

less predators but with a higher biomass at the base. This facultative associate food 

web is probably highly interwoven at all trophic levels with the inquiline food web. 

In this study we combined direct feeding tests and stable isotope analysis. Direct 

feeding tests have the advantage that trophic interactions between different groups 

can directly be detected and trophic levels easily reconstructed afterwards. However 

this technique is time-consuming and food sources can easily be overlooked or difficult 

to isolate and provide to consumers. Stable isotope analysis, on the other hand, is 

nowadays a widely used tool in terrestrial and aquatic ecosytems to study food web 

relationships. It gives a rapid and time-integrated characterization of your food web in 

which trophic levels and the proportion of different food sources to the diet of a 

consumer can be assessed (Post 2002, Hood-Nowotny and Knols 2007, Boecklen et 

al. 2011). In addition to traditional food web studies based on natural variation in stable 

isotopes, stable isotope tracers can be added deliberately and tracked from detritrus 

to consumers in the food web. This allows us to study movement of energy within and 

across ecosystems and to identify key players in a food web. This aspect of stable 

isotope analysis was applied in other microcosm systems such as pitcher plants (Butler 

et al. 2008) and could be interesting to use in our ant microcosm system as well. Stable 

isotope analysis have also limitations, including multiple sources of variation in isotopic 

signatures, limited taxonomic resolution of sources and reliance on literature values for 

key parameters (Boecklen et al. 2011). Both techniques give different insights in the 

food web and should be considered when characterizing food webs in-depth. However, 

the congruence in trophic levels in both techniques found in this study stresses the 

power of isotope analysis as a faster tool for identifying trophic levels than direct 

preference tests. 

Overall, this study demonstrates the complex trophic interactions in an inquiline 

community associated with RWAs. It provides us a new and broader perspective on 

the dynamics in small inquiline microcosms. Inquilines in this study have different 

trophic niches spanning from active hunting to scavenging and detrivory. Most 

inquilines impose costs on their host directly by preying on the brood or indirectly by 

stealing food. However, multiple predator-prey interactions among inquiline parasites 

might lower the costs of the inquiline community on their host. 
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ABSTRACT 

 

A host infected with multiple parasitic species provides a unique system to test 

evolutionary and ecological hypotheses. Different parasitic species associated with a 

single host are expected to occupy different niches. This niche specialization can 

evolve from intraguild competition among parasites. However, niche specialization can 

also be structured directly by the host when its defence strategy depends on the 

parasite’s potential impact. Then it can be expected that species with low or no 

tendency to prey on host brood will elicit less aggression than severe brood parasitic 

species and will be able to integrate better in the host system.  

We examined this hypothesis in a large community of symbionts associated with 

European red wood ants (Formica rufa group) by testing the association between 1) 

level of symbiont integration (i.e. presence in dense brood chambers vs. less populated 

chambers without brood) 2) level of ant aggression towards the symbiont 3) brood 

predation tendency of the symbiont. 

Symbionts differed vastly in integration level and we demonstrated for the first time that 

relatively unspecialized ant symbionts or myrmecophiles occur preferentially in brood 

chambers. Based on their integration level, we categorize the tested myrmecophiles 

into three categories: 1) species attracted to the dense brood chambers 2) species 

rarely or never present in the brood chambers 3) species randomly distributed 

throughout the nest. The associates varied greatly in brood predation tendency and in 

aggression elicited. However, we did not find a correlation for the whole myrmecophile 

community between a) brood predation tendency and host’s aggression b) integration 

level and host’s aggression c) integration level and brood predation tendency.  

Our results indicate that red wood ants (RWAs) did not act more hostile towards 

species that have a high tendency to prey on brood compared to species that are less 

likely or do not prey on brood. We show that potentially harmful parasites can penetrate 

into the deepest parts of a social insect fortress. We discuss these seemingly 

paradoxical findings in relation to models on coevolution and evolutionary arms races 

and list factors which can make the presence of potentially harmful parasites within the 

brood chambers evolutionary stable.  
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INTRODUCTION 

Parasitism or the exploitation of one species by another species, is one of the most 

successful strategies in natural ecosystems (Combes 2005). The interactions between 

host and parasite often result in an evolutionary arms race where both partners develop 

adaptations and counter-adaptations against each other (Dawkins and Krebs 1979). 

Most studies focus on the interaction between a single parasite and its host and 

address the adaptations and counter-adaptations. However, hosts are typically 

parasitized by an assemblage of species (Petney and Andrews 1998). In such 

polyparasitism systems, the parasite's potential impact can vary substantially. 

Furthermore, parasites in such systems tend to specialize in different temporal and 

spatial niches associated with their host. For example, non-pollinating parasitic fig 

wasps present clear contrasts in oviposition timing, which promotes parasite co-

existence (Proffit et al. 2007) and trematodes avoid competition by parasitizing 

different parts of their snail host (Hechinger et al. 2009). As an adequate defence 

response against parasites involves costs (Sheldon and Verhulst 1996), it could be 

beneficial for the host if its level of aggression is hierarchically adjusted to the 

harmfulness of the symbiont. Such plastic defence has been demonstrated in studies 

with a small number of parasites associated with mammals, pine weevils and social 

insects (Moore 2002, Mburu et al. 2009, Ennis et al. 2010, von Beeren et al. 2010), 

where hosts maximize the investment of costly defence strategies towards potential 

more harmful parasites, while potential less detrimental symbionts are tolerated. 

A diverse group of organisms, ranging from commensals to true parasites, succeeded 

to penetrate into the well-defended nests of social insects (Kistner 1979, Hölldobler 

and Wilson 1990). Those fortresses provide a unique environment with different 

microhabitats and abundant food resources. David Kistner categorized social insect 

symbionts in two major categories based on their behaviour: integrated species "which 

by their behaviour and their hosts' behaviour can be seen as incorporated into their 

hosts' social life", and non-integrated species, "which are not integrated into the social 

life of their hosts but which are adapted to the nest as an ecological niche (Kistner 

1979)." Here we use the same nomenclature, but categorize symbionts rather on nest 

location than on their behaviour or host behaviour. In our definition, integrated species 

are able to penetrate into the dense brood chambers, whereas non-integrated species 

occur in sparsely populated nest chambers without brood at the periphery of the nest. 

There are indications that intraguild competition among social insect parasites can 

cause temporal niche specialization (Witek et al. 2013). Alternatively, niche 
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specialization can develop by a differential degree of tolerance of the host towards the 

symbionts. In that context, it is hypothesized that symbionts with lower potential costs 

are more integrated in the host’s colony and incite less aggression (Hughes et al. 

2008). These predictions were supported in a study with the army ant Leptogenys (von 

Beeren et al. 2010). Rove beetles preying on the host larvae elicited a strong 

aggression response. They were poorly integrated because they occur only at the 

edges of the colony. Rove beetles that do not prey on brood were better integrated in 

the colony. They did not receive aggression and were found in the central part of the 

nest. Some highly specialized myrmecophiles, however, do not follow these 

predictions. These species, such as larvae of the Maculinea butterflies, Microdon 

syrphid flies and Lomechusa rove beetles can integrate in the inner brood chambers 

of particular ant species without eliciting aggression (Hölldobler and Wilson 1990, 

Hovestadt et al. 2012). Those parasites have developed advanced chemical and 

behavioural adaptations to deceive their host (Hölldobler and Wilson 1990, Elmes et 

al. 1999). Those hosts and parasites are involved in a complex evolutionary arms race 

and their association may be stable due to frequency-dependent selection and 

geographic mosaic coevolution (Pierce et al. 2002, Nash et al. 2008). However, in 

associations with less specialized species, which are the scope of this study, hosts 

could detect those intruders and adjust their aggression to the potential fitness costs 

that the parasite could incur on the host (von Beeren et al. 2010). 

Our knowledge on life history strategies of social insect symbionts in species-rich host-

macroparasite communities is weak and is mainly based on army ant host systems 

(Akre and Rettenmeyer 1966, Kistner 1979, 1982, Hölldobler and Wilson 1990, 

Gotwald 1995). In parallel to the rich myrmecophile communities of tropical army ants 

(Rettenmeyer et al. 2010), nests of European red wood ants (RWAs) are also hotspots 

for myrmecophile diversity (chapter 1: Parmentier et al. 2014). However the 

organization of army ants and RWAs is totally different. Army ants have an atypical life 

style: they do not construct permanent nests and regularly migrate to new temporal 

bivouacs. This organization also affect the symbionts as they have to coordinate their 

life cycle intimately with the host’s migrations (Akre and Rettenmeyer 1968, von Beeren 

et al. 2015). RWAs, on the other hand, construct a permanent, central nest. The 

aboveground part of their nest is a heap of organic thatch material, which provides 

plenty of hiding places for associated species and parasites throughout the mound. 

Because of these differences in the organization of their host, it is particularly 

interesting to compare the myrmecophile communities of army ants with those of nest-

inhabiting RWAs.  
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In this study, our ultimate aim was to test whether RWA myrmecophiles with a lower 

or no tendency to prey on brood are better integrated in the host ant colony. We tested 

the adaptive defence response of the host with a very large number of symbionts. We 

first determined three parameters for the different symbionts: (1) their level of 

integration in the colony (2) the level of host aggression elicited (3) their tendency to 

prey on ant brood. Linking these parameters allowed us to test the following 

hypotheses: 

a) Species with a lower level of brood predation elicit less aggression  

Some studies showed that ants are able to detect potential more harmful enemies 

and adjust their level of aggression concordantly (von Beeren et al. 2010, 

Pamminger et al. 2011). They argue that this hierarchy of aggression responses 

might promote colony fitness.  

b) Well-integrated species that reside in the dense brood chambers elicit lower level 
of aggression 

Better integrated symbionts are expected to elicit less aggression and are 

therefore able to stay in the dense brood chambers.  

c) Well-integrated species that live among the brood have a lower or no tendency to 
prey on brood 

From the perspective of the host, it is beneficial that it only tolerates species with 

low or no tendency to prey on brood, while severe brood parasites are only 

tolerated at the periphery of the nest or colony.  

Consequently, species with low or no tendency to exhibit brood predation are tolerated 

and can integrate well into the colony, while species with a high brood parasite 

tendency are deterred to the edges of the colony by an elevated aggression response 

of the host.  

 

MATERIAL AND METHODS 

Study system 

A strikingly large number of obligate myrmecophiles can be found with the mound 

building European RWAs (Formica rufa group) (chapter 1: Parmentier et al. 2014). This 

myrmecophile community completely consists of rather unspecialized symbionts, 

except for the specialized, but rare myrmecophile Lomechusa pubicollis (Donisthorpe 
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1927). Specialized myrmecophiles (symphiles or true guests sensu Erich Wasmann 

(Wasmann 1894)) are treated by the ants as members (fed and groomed) of the colony 

as a result of special glands (e.g. appeasement gland) and morphological (e.g. 

modified antennae) and behavioural adaptations (e.g. food soliciting). Unspecialized 

myrmecophiles (synechthrans and synoeketes sensu Erich Wasmann (Wasmann 

1894)), however, often look very similar to non-myrmecophile relatives and are ignored 

or treated with hostility (Wasmann 1894, Donisthorpe 1927, Hölldobler and Wilson 

1990). Apart from obligate myrmecophiles, RWA mound also host many facultative or 

occasional myrmecophiles, These arthropods mostly live away from ants, but can often 

be found in RWA mounds as well (chapter 1: Parmentier et al. 2014). RWA nests are 

heterogenic in worker distribution, with the largest abundances found in the inner brood 

chambers (Rosengren et al. 1987). One could expect that more detrimental species 

would be recognized by the RWA hosts and are only tolerated at the outer edges of 

the nest away from the brood. However, it is not clear in what way other factors (e.g. 

abundance of hiding places, behavioural and chemical adaptations of symbionts) could 

affect this relation. To test our hypothesis for the RWA myrmecophiles community, we 

quantified three parameters: 1) level of integration 2) level of host ant aggression and 

(3) brood predation tendency, and examined whether they were linked. Hypothesis 

testing was done by using eight staphylinid beetle species (Quedius brevis, Dinarda 

maerkelii, Thiasophila angulata, Notothecta flavipes, Lyprocorrhe anceps, Amidobia 

talpa, Leptacinus formicetorum, Stenus aterrimus), two spiders (Thyreosthenius 

biovatus, Mastigusa arietina), one isopod (Platyarthrus hoffmannseggii), one springtail 

(Cyphoderus albinus), and five non-staphylinid beetle species: Clytra quadripunctata 

(Coleoptera: Chrysomelidae), Monotoma angusticollis (Coleoptera: Monotomidae), 

Monotoma conicicollis (Coleoptera: Monotomidae), Dendrophilus pygmaeus 

(Coleoptera: Histeridae) Myrmetes paykulli (Coleoptera: Histeridae). In addition, we 

collected Porcellio scaber in the mounds, which lives facultatively associated with 

RWAs. All tested myrmecophiles are relatively unspecialized following the definition 

given above (Table 5.1). Myrmecophiles were caught by spreading nest material onto 

a large white tray in the field. We used the adult stage for all species, except for C. 

quadripunctata where we tested the larvae. Those larvae live in the nest and have a 

case in which they can hide. The adults of this species live on plants around the nests. 

After collecting myrmecophiles in the field, ants and their brood were gently placed 

back in the nest. Myrmecophiles were collected in seven RWA populations (chapter 2: 

Parmentier et al. 2015a) across Western Flanders, Belgium and in one population in 

Boeschepe, France. RWA populations consisted of Formica rufa and/or Formica 
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polyctena mounds. Those closely related species have a very analogous colonial 

organization in the study area. Their myrmecophile community is likewise analogous 

(chapter 2: Parmentier et al. 2015a).  

Experiments 

The experiments were performed between December 2012 and June 2015.  

Experiment I: Level of integration 

In this experiment, we wanted to test whether myrmecophiles occupied different niches 

in RWA nests. More specifically we were interested whether myrmecophiles preferred 

to stay in densely populated chambers with ant brood or in less densely populated 

areas. Following our definition given above, integrated myrmecophiles penetrate into 

the densely populated chambers with brood, whereas poorly integrated species prefer 

sparsely populated chambers without brood. We constructed laboratory nests 

consisting of six round plastic pots (diameter 8 cm, height 5 cm) which were connected 

with plastic tubes (length 2 cm, inner diameter 1.1 cm). The pots and connections were 

arranged in such a way that every pot was connected with two other pots (Fig. 5.1). 

The bottom of the pots and connection tubes were filled with plaster of Paris (pots ca. 

1 cm, tubes ca. 0.3 cm). We coated the inner walls of the pots with fluon to prevent 

ants and myrmecophiles from climbing up. In every pot (hereafter called chamber) we 

spread 10 g nest material (fine organic material) of a deserted F. rufa nest, to approach 

natural nest conditions and enabling myrmecophiles to hide. Transport and exchange 

of this nest material between the chambers was limited. All pots were sealed with a lid 

to prevent desiccation. We started each replicate by adding 360 F. rufa workers, 100 

larvae of different sizes, 50 pupae and an egg pile (ca. 50 eggs/larvae) to the nest. 

Ants and their brood were collected in a supercolony in 

 Boeschepe, France. After one day, myrmecophiles were apportioned randomly to the 

six chambers. The nest was placed in complete darkness to mimic natural conditions. 

Two days later, chamber openings were gently sealed with moist cotton plug and the 

Figure 5.1.  Schematic overview of the test nest. The nest consists of 
six chambers, in which each is connected with two other chambers. 
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nest was taken out of the darkness. The number of workers, brood and myrmecophiles 

were counted by spreading out the content of each chamber onto a large plastic tray 

with fluon coated walls. To distinguish M. angusticollis from M. conicicollis, we used a 

magnifier (4X, Eschenbach). Workers, brood and myrmecophiles that were found in 

the connection tubes were not considered. We replicated this experiment 16 times in 

total. We used different individuals for all myrmecophile species in each replicate, 

except for D. pygmaeus. For this species we found only three individuals and the same 

individuals were re-used in successive trials. The number of individuals per species 

recorded in each replicate at the beginning and at the end of the experiment is listed 

in Table A-5.2 of Appendix 5-2. Myrmecophiles for this experiment were collected in 

the Boeschepe population, but also in other RWA populations (F. rufa and F. 

polyctena) to increase our sample size. Aggression experiments for several 

myrmecophile species indicated that F. rufa workers did not act more aggressively 

towards myrmecophiles collected in F. polyctena colonies than towards 

myrmecophiles found in their own colony (Appendix 5-1). Chemical analyses of the  

cuticular hydrocarbons confirm this lack of colony-specific and even RWA host-specific 

(i.e. individuals found in F. rufa do not differ from those found in F. polyctena) 

adaptation in all myrmecophiles tested in this paper (chapter 6). Therefore behaviour 

of myrmecophiles is expected not to be affected by the RWA colony of origin. Ant 

workers and brood were placed back in the host supercolony after the experiment.  

Experiment II: Level of aggression elicited 

We tested ant aggression toward myrmecophiles to study whether myrmecophiles 

elicited different aggression responses. Myrmecophiles and ants were collected in the 

same F. rufa supercolony in Westvleteren, except for D. pygmaeus and M. arietina. 

Those species were only found in F. polyctena populations. Based on the lack of RWA 

host-specific adaptation (Appendix 5-1, chapter 6), we assume that these aggression 

tests of D. pygmaeus and M. arietina are comparable with those of the other 

myrmecophiles collected in the F. rufa colony (West-Vleteren). This was further 

confirmed with the high aggression of F. polyctena workers towards M. arietina found 

in the same colony, which was similar to the aggression of F. rufa towards those 

spiders (Appendix 5-1). We used a small rectangular plastic arena (8 cm x 5.5 cm), 

filled with ca. 1 cm plaster of Paris and coated with fluon. Forty F. rufa workers were 

acclimatized for one hour to the arena. Then a myrmecophile was added and after ten 

seconds, the first twenty interactions (i.e. antennae of ant crossed the myrmecophile) 

with the ants were scored. Trials were performed in darkness under red light and were 
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recorded with a video camera (SONY HDR-XR550VE). Videos were subsequently 

analysed in VirtualDub which allows to watch videos frame by frame. Ant aggression 

was scored by the proportion of aggressive interactions (acid spraying, chasing, biting, 

opening mandibles) out of the first 20 interactions. We used different myrmecophile 

individuals for each replicate, workers were re-used for several trials.  

Experiment III: Brood predation tendency 

Brood predation tendency of a myrmecophile species was quantified as the proportion 

of individuals that preyed on RWA eggs. We filled small plastic vials (diameter 4.5 cm) 

with ca. 1 cm of moistened plaster of Paris. Subsequently, we piled five RWA eggs in 

the centre and introduced a myrmecophile. Myrmecophiles were collected in different 

RWA populations in the study region described above. Eggs were collected in F. rufa 

colonies (Boeschepe and West-Vleteren). After one day, we checked whether the 

myrmecophile preyed on the eggs. For each myrmecophile species, we used different 

individuals in all replicates. We used acceptance of ant eggs (at least one egg eaten), 

rather than proportion of eggs eaten as the latter might be affected by the size of the 

myrmecophilous species. Individuals were starved for one day prior to the experiment. 

This index allowed us to classify myrmecophiles according to their tendency of brood 

predation. In the presence of ants, the success rate for the parasite might be lower. 

For the species that were attracted to the brood chamber in Experiment I, we also ran 

replicates with workers (five eggs and five workers in the same vial), to see if they still 

have a tendency to prey on ant brood. 

Data analysis  

Experiment I: Level of integration 

In all trials, ants stored the brood in one chamber (hereafter called the brood chamber). 

Chambers gradually spanned a large gradient in worker density with the brood 

chamber containing always the largest number of workers with an overall mean ± SD 

of 46.7% ± 14.1 (Table A-5.3 in Appendix 5-2), reflecting the heterogeneity of worker 

density in natural wood ant nests (Gösswald 1989a), pers. observations TP).  

Analyses were performed in R 3.2.1 (R Core Team 2014). Differences in association 

with the brood chambers in the myrmecophile community were compared using a 

generalized linear mixed model in a Bayesian setting with function blmer in R package 

‘blme’ version 1.0.4 (Chung et al. 2013). In contrast with generalized linear mixed 

models, this type of models can handle complete separation in a dataset by using a 

weak prior (Bolker 2015). A part of our dataset was completely separated as some 
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species were never observed in any of the brood chambers. The full model included 

the fixed factor ‘species’ and the random factor ‘replicate’. In addition, we incorporated 

an observation random factor to account for overdispersion (Browne et al. 2005). A 

Type II Wald chisquare test was conducted with the Anova function in package ‘car’ 

version 2.1.0 (Fox and Weisberg 2011) to assess whether species differed in level of 

integration (i.e. found in or outside the brood chamber). Post-hoc differences were 

tested by the glht function provided by package ‘multcomp’ version 1.4.1 (Hothorn et 

al. 2008). We controlled the false discovery rate (multiple testing problem) by adjusting 

the P-values with the Benjamini-Hochberg method (Benjamini and Hochberg 1995).  

To test attraction or repulsion towards the brood chamber of a single species, we 

directly tested for each species whether the observed proportion of individuals in the 

brood chambers (pooled over the 16 replicates) deviated from a proportion of 1/6 with 

an exact binomial test. Indeed, in a six-chamber nest, we expect that a species with 

attraction to the brood chamber will have significant more occurrences than 1/6 in the 

brood chamber. In contrast, the occurrence probability in the brood chambers will be 

lower than 1/6 for species that avoid those chambers. We controlled the false discovery 

rate (multiple testing problem) of the multiple exact binomial tests by adjusting the P-

values with the Benjamini-Hochberg method (Benjamini and Hochberg 1995). 

Experiment II and III: Level of aggression elicited and brood predation tendency 

We ran a quasibinomial GLM with “species” as single explanatory factor and elicited 

aggression as dependent variable. Similarly, we tested with a quasibinomial GLM 

whether proportion of individuals preying on brood was significantly different. 

Significance was tested with a Likelihood Ratio chisquare test implemented in package 

car. Confidence intervals of aggression response and proportion individuals preying 

on eggs were calculated by the function confint (Table 5.2).  

Do well-integrated species of an inquiline community have a lower brood predation 
tendency? 

We subdivided our main hypothesis in three parts: a) Do species with a lower tendency 

of brood predation elicit lower level of aggression? b) Do species that reside in the 

dense brood chambers elicit lower level of aggression? c) Do species that live among 

the brood have a lower tendency of brood predation? The three subhypotheses were 

tested by running both a Pearson product-moment and Spearman Rank correlation 

between a) brood predation tendency and level of aggression elicited b) level of 

integration and level of aggression elicited c) level of integration and brood predation 
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tendency. We did not possess data on brood predation for P. scaber nor data on level 

of integration for M. arietina (all individuals were killed before the end of the 

experiment). Therefore, correlation between brood predation tendency and aggression 

elicited was run without P. scaber (Nspecies = 17), correlation between level of integration 

and aggression elicited was run without M. arietina (Nspecies = 17) and correlation 

between level of integration and brood predation tendency was done wihthout M. 

arietina and P. scaber (Nspecies = 16). In addition, we calculated the same correlations, 

but only focusing on the eight rove beetles (Staphylinidae) instead of all 

myrmecophiles. Analyses were performed in R 3.2.1.  

 

RESULTS 

Level of integration 

Myrmecophiles differed significantly in preference for RWA brood chambers (BGLME, 

Chisq = 112.76, DF = 17, P < 0.001). Results of Benjamini-Hochberg Post-hoc tests 

are given with a letter code in Fig. 5.2. Myrmecophiles could be classified into three 

categories based on their association with the brood chambers: 1) attraction to the 

dense brood chambers 2) avoidance of the brood chambers and 3) random distribution 

(Fig. 5.2, Table 5.1). Clytra quadripunctata (mean proportion in brood chamber = 0.45, 

95 % CI: 0.30-0.61, P < 0.001), T. angulata (mean proportion in brood chamber = 0.37, 

95 % CI: 0.27-0.48, P < 0.001) and M. conicicollis (mean proportion in brood chamber 

= 0.33, 95 % CI: 0.21-0.47, P = 0.011) were significantly attracted to the brood 

chambers (proportions in brood chamber significantly more than random 1/6 = 0.167 

distribution). The highest attraction was found in the case-larvae of C. quadripunctata. 

The high attraction of this species to the dense brood parts of the nest was also directly 

observed in the field (sometimes they were also observed crawling on the mound). In 

the deep, central part of the nest, we also regularly found empty pupal cases which 

suggests that pupation also takes place in the heart of the nest. In contrast Q. brevis 

(mean proportion in brood chamber = 0.00, 95 % CI: 0.00-0.13, P = 0.043), D. 

pygmaeus (mean proportion in brood chamber = 0.00, 95 % CI: 0.00-0.10, P = 0.011) 

and the facultative associate P. scaber (mean proportion in brood chamber = 0.03, 95 

% CI: 0.00-0.12, P = 0.011) significantly avoided the dense brood chambers 

(proportions in brood chambers significantly lower than random 1/6 = 0.167 

distribution) (Table 5.1). Q. brevis and D. pygmaeus were even never observed in the 

brood chambers (Table 5.1). The spider M. arietina was always (15 individuals) killed 

before the end of the experiment (see Fig. cover page chapter 5), which might indicate 
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that this species is not able to survive in a high density of workers without much hiding 

places. Field observations supported this apparent weak integration of the spider. It 

was never found in material with brood, but it was mainly found under pieces of bark 

in the nest. When disturbed, they ran rapidly away and hided in crevices and holes in 

the bark. Many distinct egg packets of this species (cf. Donisthorpe 1927) could be 

found on the bark. Finally a group of myrmecophiles was rather randomly distributed 

in the nest, i.e. they were neither significantly attracted nor repelled from the brood 

chambers (Table 5.1).  

 

 
Figure 5.2. Level of integration of myrmecophiles. Proportion of individuals for different myrmecophilous species that were found 
in the brood chamber in the 6-chamber nest are given. Species attracted to the brood chambers (well-integrated) have proportions 
significant greater than 1/6, species that avoided the brood chambers (poorly integrated) have proportions significant lower than 
1/6. Species without neither attraction nor repulsion, have a more random distribution and the proportions in the brood chamber 
are not significantly different from 1/6. The observed proportion for a given myrmecophilous species was tested with an exact 
binomial two-sided test. P-values were corrected for multiple testing by the Benjamini-Hochberg method (false discovery rate), 
*P< 0.05, ***P < 0.001. Species with no letters in common are significant different at the α = 0.05 level (Bayesian generalized 
linear mixed model followed by Benjamini-Hochberg Post Hoc Tests).
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Table 5.1. Proportion of individuals in brood chamber for the tested myrmecophiles. Attraction to or repulsion from the brood 
chamber was tested with an exact binomial two-sided test (deviation from a random distribution of 1/6 was tested). Reported P-
values (Pcorr) were adjusted for multiple testing by the Benjamini-Hochberg method (false discovery rate). N = number of individuals 
tested, for D. pygmaeus three individuals were re-used in different replicates. For M. arietina, all individuals were killed during the 
experiment and therefore no testing was done. 95% CI: 95% confidence. Host specifity based on Table A-1 in chapter 1: 
Parmentier et al. (2014) (strict specialist: only records with RWAs, specialist: some records with non RWAs, but RWAs are the 
main host, moderate: records with RWAs, but distribution in non-RWAs probably important as well, generalist: myrmecophiles 
have no preference for a particular ant species, but are always found in presence of ants). Graphical representation of brood 
chamber association is given in Fig. 5.2. 

Species Taxon Myrmecophily Host specifity N 
Prop. 
brood 
chamber 

95 %CI Pcorr 
Brood 
chamber 

         
Clytra quadripunctata Coleoptera (Chrysomelidae) obligate specialist 44 0.45 0.30-0.61 <0.001 attraction 
Thiasophila angulata Coleoptera (Staphilinidae) obligate specialist 91 0.37 0.27-0.48 <0.001 attraction 
Monotoma conicicollis Coleoptera (Monotomidae) obligate strict specialist 55 0.33 0.21-0.47 0.011 attraction 
Notothecta flavipes Coleoptera (Staphilinidae) obligate specialist 43 0.28 0.15-0.44 0.133 random 
Lyprocorrhe anceps Coleoptera (Staphilinidae) obligate specialist 54 0.28 0.16-0.42 0.102 random 
Platyarthrus hoffmannseggii Isopoda (Platyarthridae) obligate generalist 68 0.25 0.15-0.37 0.138 random 
Monotoma angusticollis Coleoptera (Monotomidae) obligate strict specialist 47 0.23 0.12-0.38 0.357 random 
Thyreosthenius biovatus Araneae (Linyphiidae) obligate specialist 54 0.22 0.12-0.36 0.357 random 
Dinarda maerkelii Coleoptera (Staphilinidae) obligate specialist 44 0.16 0.07-0.30 1.000 random 
Cyphoderus. albinus Collembola (Cyphoderidae) obligate generalist 70 0.13 0.06-0.23 0.553 random 
Leptacinus formicetorum Coleoptera (Staphilinidae) obligate specialist 52 0.12 0.04-0.23 0.516 random 
Myrmetes paykulli Coleoptera (Histeridae) obligate specialist 44 0.11 0.04-0.25 0.514 random 
Amidobia talpa Coleoptera (Staphilinidae) obligate specialist 106 0.11 0.06-0.19 0.260 random 
Stenus aterrimus Coleoptera (Staphilinidae) obligate strict specialist 50 0.10 0.03-0.22 0.357 random 
Porcellio scaber Isopoda (Porcellionidae) facultative facultative 59 0.03 0.00-0.12 0.011 repulsion 
Dendrophilus pygmaeus Coleoptera (Histeridae) obligate specialist 26 0.00 0.00-0.13 0.043 repulsion 
Quedius brevis Coleoptera (Staphilinidae) obligate moderate 35 0.00 0.00-0.10 0.011 repulsion 
Mastigusa arietina Araneae (Dictynidae) obligate moderate 15 NA    
         

 

Table 5.2. Proportion aggressive interactions of ant workers towards myrmecophiles and proportion myrmecophile individuals 
preying on ant brood (= brood predation tendency) for different myrmecophile species. N = number of individuals tested, 95% CI: 
95% confidence interval, NA = not available.  

Species 
Proportion aggressive 
interactions 

N 95% CI  
Proportion individuals 
preyed on brood 

N 95% CI 

Amidobia talpa 0.12 22 0.08-0.17  0.18 22 0.06-0.36 
Cyphoderus albinus 0.00 15 0.00-0.02  0.00 15 0.00-NA 
Clytra quadripunctata 0.01 10 0.00-0.03  0.67 24 0.48-0.83 
Dinarda maerkelii 0.27 22 0.21-0.33  0.52 21 0.33-0.72 
Dendrophilus pygmaeus 0.19 6 0.10-0.31  1.00 9 NA-1.00 
Lyprocorrhe anceps 0.25 21 0.19-0.31  0.51 35 0.36-0.67 
Leptacinus formicetorum 0.42 11 0.32-0.51  0.81 16 0.59-0.95 
Monotoma angusticollis 0.03 20 0.01-0.06  0.68 25 0.49-0.83 
Mastigusa arietina 0.73 12 0.64-0.81  0.10 10 0.01-0.36 
Monotoma conicicollis 0.05 20 0.02-0.08  0.50 18 0.29-0.71 
Myrmetes paykulli 0.23 18 0.13-0.25  0.67 21 0.46-0.83 
Notothecta flavipes 0.63 21 0.56-0.70  0.96 23 0.83-1.00 
Platyarthrus hoffmannseggii 0.05 20 0.03-0.09  0.60 20 0.39-0.79 
Porcellio scaber 0.07 10 0.03-0.13  NA NA. NA 
Quedius brevis 0.82 12 0.74-0.88  0.93 14 0.73-0.99 
Stenus aterrimus 0.13 20 0.08-0.18  0.00 22 0.00-NA 
Thiasophila angulata 0.45 35 0.40-0.50  0.98 41 0.90-1.00 
Thyreosthenius biovatus 0.24 26 0.19-0.29  0.38 21 0.20-0.58 
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Level of aggression elicited and brood predation te ndency  

Ant aggression ranged vastly depending on the myrmecophile species (quasibinomial 

GLM, LR Chisq = 1563.5, P < 0.001) (Table 5.2). Some species such as C. albinus, 

M. angusticollis and C. quadripunctata were not or only very rarely attacked, while 

others such as Q. brevis and M. arietina were heavily attacked. The proportion of 

individuals that preyed on ant eggs varied greatly among myrmecophile species 

(quasibinomial GLM, LR Chisq = 199.72, P < 0.001) (Table 5.2). Cyphoderus albinus 

and S. aterrimus never preyed on ant eggs. In contrast, more than 90% of the 

individuals of N. flavipes, D. maerkelii, T. angulata, Q. brevis and D. pygmaeus preyed 

on the ant eggs (Table 5.2). In the presence of ants, a similar (C. quadripunctata N = 

9, proportion individuals preying on eggs = 0.67, M. conicicollis, N = 8, proportion 

individuals preying on eggs = 0.50) or lower proportion of egg predation (T. angulata, 

N = 10, proportion individuals preying on eggs = 0.70) was recorded for the three 

species that were attracted to the brood chambers compared with the tests without 

ants.  

Do well-integrated species of an inquiline communit y have a lower brood 
predation tendency? 
Ants did not respond more aggressively towards myrmecophiles that have a higher 

brood predation tendency (Spearman’s rank correlation: r = 0.36, P = 0.153, Pearson’s 

product-moment correlation: r = 0.32, P = 0.206) (Fig. 5.3a). For example the severe 

brood parasite C. quadripunctata elicited hardly any aggression, whereas the low 

virulent spider M. arietina provoked a strong aggression response (Table 5.2). We did 

not find a correlation between the level of integration of the myrmecophiles and the 

aggression response of the ants (Spearman’s rank correlation: r = -0.22, P = 0.399, 

Pearson’s product-moment correlation: r = -0.22 P = 0.404), Those factors were also 

not linked, when we excluded the observation of the only facultative myrmecophile P. 

scaber (Spearman’s rank correlation: r = -0.22, P = 0.422, Pearson’s product-moment 

correlation: r = -0.25 P = 0.341) ((Fig. 5.3b). Illustrative for this lack of association is 

the high level of ant aggression towards some species (e.g. T. angulata) with a 

preference for the brood chambers. Finally, nest location preference was also not 

associated with the brood predation tendency of the myrmecophiles (Spearman’s rank 

correlation: r = 0.08, P = 0.761, Pearson’s product-moment correlation: r = 0.13, P = 

0.624) (Fig. 5.3c). Here, some species with a high brood predation tendency (C. 

quadripunctata, T. angulata) preferred the dense brood chambers, whereas other 
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species ranging from no to high brood predation tendency preferentially occurred away 

from the brood chambers or had no nest location preference. 

Fig. 5.3 Relationship between brood predation tendency - level of elicited aggression - level of integration. a Relationship between 
level of elicited aggression and brood predation tendency (b) relationship between level of integration and level of elicited 
aggression and (c) relationship between level of integration and brood predation tendency. Level of aggression is the mean 
proportion of aggressive interactions out of 20 interactions with F. rufa workers (Exp.2). Brood predation tendency is the proportion 
of individuals that preyed on F. rufa eggs (Exp.3). Level of integration is the proportion of individuals integrated in the densely 
populated brood chamber (Exp. 1). Red points refer to staphylinid myrmecophiles, black points to non-staphylinid myrmecophiles, 
the blue point to the facultative myrmecophile P. scaber. 

 

When we only focused on the eight rove beetles, we found a strong positive correlation 

between worker aggression and brood predation tendency (Spearman’s rank 

correlation: r = 0.88, P = 0.007, Pearson’s product-moment correlation: r = 0.86, P = 

0.007) (Fig. 5.3a red points). However, level of integration of rove beetles was not 

correlated with aggression response (Spearman’s rank correlation: r = 0.02, P = 0.977, 

Pearson’s product-moment correlation: r = - 0.09, P = 0.831) and not with brood 

predation tendency (Spearman’s rank correlation: r = 0.38, P = 0.360, Pearson’s 

product-moment correlation: r = 0.27 P = 0.513). This means that ants responded more 

aggressively to rove beetles that are potentially more harmful, but they were not able 

to deter some harmful species (e.g. N. flavipes and T. angulata) from the brood 

chambers. In addition both rove beetles (Q. brevis and L. formicetorum) with a high 

(e.g. Q. brevis) and a low tendency (S. aterrimus) of brood predation had a relatively 

low integration. 

 

DISCUSSION 

In several multi-symbiont systems, it has been reported that symbionts are not 

homogenously distributed within the host system but occupy different spatial and 

temporal niches (Friggens and Brown 2005, von Beeren et al. 2010, Witek et al. 2013). 
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This is further supported by our data on RWA symbionts. We showed that those 

symbiont species are indeed heterogeneously distributed across their host nests. More 

specifically, some species were attracted to the densely populated brood chambers, 

whereas rather poorly integrated species clearly avoided those dense brood 

chambers. Another group did not appear to be attracted or repulsed by the dense brood 

chambers. We showed here for the first time the attraction of relatively unspecialized 

(synechthrans and synoeketes sensu Wasmann (Wasmann 1894)) species towards 

the brood chambers in social insects. Generally it is assumed that only specialized 

(symphiles sensu Wasmann (Wasmann 1894)) species are able to settle among the 

brood in ant colonies (Hölldobler and Wilson 1990).  

Niche selection in multiple symbiont systems can result from avoiding competition with 

other symbionts (described as niche partitioning) (Proffit et al. 2007, Witek et al. 2013). 

However, in several host-multiparasite systems, it has been reported that the host 

adjusts its defence to the potential negative impact of the symbiont (Moore 2002, 

Mburu et al. 2009, Ennis et al. 2010, von Beeren et al. 2010). Niche selection of 

symbionts can then be an outcome of differential host-symbiont interaction rather than 

resulting from competition among symbionts. In this case, niche occupation or level of 

integration results from a varying tolerance of the host for different symbionts. For 

example, the army ant Leptogenys behaves more aggressively towards some 

associated rove beetles than to others. Therefore the less aggressed species can 

thrive in the centre of the colony, whereas the other species are only tolerated at the 

margins of the colony. From an evolutionary point of view, it is a good strategy to be 

more aggressive to symbionts with a high brood predation tendency and chase them 

away from the brood chambers. This was hypothesized in Hughes et al. (2008) and 

supported in von Beeren et al. (2010). In our experiments, ants did act more 

aggressively towards rove beetles with a higher potential for brood predation and more 

peaceful to species with no or low brood predation tendency. However, this association 

was absent, when we look at the entire myrmecophile community, including non-

staphylinid myrmecophiles. For example, the spider M. arietina had a very low 

tendency for brood predation, but was heavily persecuted in the aggression 

experiments and bitten to death in all nest location preference trials. Moreover, our 

results did not show a correlation between nest location and brood predation tendency 

for staphilinids and the myrmecophile community as a whole. Species with a 

preference for the brood chambers were even characterized by a relatively high brood 

predation tendency. They are not only potentially dangerous, but incur real costs, as 

the presence of ant workers did not stop them from parasitizing on the brood. Species 
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that avoided brood chambers ranged from non-brood predators to species with a high 

brood predation tendency. There was also no correlation between nest location and 

ant’s aggression response for staphylinids and the myrmecophile community as a 

whole. In contrary to the expectations that species in the brood chambers will provoke 

less aggression, we found that some species that hardly elicited an aggressive 

response stayed away from the inner brood chambers or had a more random 

distribution. Some species (e.g. T. angulata), on the other hand, elicited a strong 

response, but still preferred the dense brood chambers and managed to cope with this 

highly stressful conditions. 

It is puzzling how symbionts with a high brood predation tendency succeed to live 

within the dense brood chambers without being repulsed. At the proximate level, the 

tested myrmecophiles employ different strategies to overcome ant defence. In contrast 

with army ants, wood ant mound architecture provide a plethora of hiding places. Small 

and slender myrmecophiles, especially rove beetles can quickly squeeze in small holes 

and cracks when aggressed. Severe brood parasitic rove beetles could therefore, in 

spite of being recognized as potential harmful, integrate well in the colonies. Clytra 

quadripunctata, the myrmecophile with the highest preference for the brood chamber, 

on the contrary, relies on a morphological adaptation. When attacked, they withdraw 

in their protective case and seal the opening with their well armoured head 

(Donisthorpe 1927). Monotoma beetles are slow-moving small beetles and retract their 

legs when attacked which render them difficult to detect. Future research will also 

reveal whether chemical strategies such as chemical insignificance are involved in the 

integration of brood predators (Dettner and Liepert 1994, Lenoir et al. 2001a, van 

Zweden and d’Ettorre 2010).  

 At the ultimate level, the lack of rejection of brood predators in the brood chambers 

can be explained by two theoretical models that are not mutually exclusive. “The 

evolutionary lag hypothesis” states that no genetic variation in defence strategies 

emerged in the host at this point. But once available, efficient defence will spread and 

become fixed. This hypothesis assumes that parasite repulsion is beneficial from the 

host’s perspective. Here the parasite is currently the winning partner in an ongoing 

evolutionary arms race and it only takes time before the host evolves counter-

adaptations (Rothstein 1975, 1990). However, when a host is infected by multiple 

parasites, as in our ant-myrmecophile study system, defence strategies can be a 

compromise to different parasites and clear co-evolutionary traits are consequently 

harder to identify (Rothstein 1990). Alternatively, the evolutionary equilibrium 
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hypothesis predicts that owing to the costs involved with parasite repellence, parasite 

acceptance or tolerance counter-intuitively can become beneficial. The arms-race 

comes here to a standstill in a stable equilibrium and the observed defence strategy is 

than determined by a balance of parasite load and the costs to defend against those 

parasites (Zahavi 1979, Rohwer and Spaw 1988, Lotem et al. 1992). For example, the 

Jacobin cuckoo (Clamator jacobinus) lay a non-mimetic egg in the nest of its host. The 

host cannot eject or puncture the egg because it is too large (double size of host egg) 

and has a thick shell. The host can still avoid brood parasitism by abandoning the nest, 

but this entails high costs due to an elevated predation and parasitism risk later in the 

season which exceed the costs for accepting the cuckoo egg. Therefore a non-mimetic 

cuckoo egg and the lack of a host defence response will here be a stable equilibrium 

(Krüger 2011). Defence against parasitic myrmecophiles could also be costly for ants. 

First, regular task switching to defensive roles involve costs for workers due to time 

needed to perform defensive behaviour and energy costs owing to shifts in behavioural 

state (Duarte et al. 2011, Goldsby et al. 2012). Second, myrmecophiles and especially 

rove beetles may emit repellent, toxic, or alarm inducing chemicals when aggressed 

(Huth and Dettner 1990, Stoeffler et al. 2011) and might interfere as such normal 

colony routine and organization.  

The presence of brood predators among the brood can dramatically affect colony 

fitness (Thomas and Wardlaw 1992, Sammataro et al. 2000). However, different 

mechanisms can lower the cost of the parasites on their RWA host. First, wood ant 

nests provide a multitude of food resources. We demonstrated that most 

myrmecophiles only facultatively feed on ant brood (chapter 4: Parmentier et al. in 

press). Second, RWA parasites control each other by intraguild predation (chapter 4: 

Parmentier et al. in press). Brood predation can also be lower for some species in 

presence of ants implying that ants partly deter some brood predators (chapter 3: 

(Parmentier et al. 2015b). Finally, RWAs nests regularly abandon their nest and 

construct new mounds on another location. However untested yet, it is argued that 

nest displacement can be an effective tool to control parasite infection (von Beeren et 

al. 2010). 

 

CONCLUSIONS 

This study provides a unique insight in the different strategies of social insect 

symbionts and the interactions with their host. We demonstrated that symbionts 

associated with ants differ greatly in the level of integration in the host nest. We showed 
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that unspecialized species can thrive in the densely populated brood chambers, 

whereas others are poorly integrated and prefer scarcely populated chambers. 

Moreover we demonstrated that myrmecophiles have a varying degree of brood 

predation tendency. Remarkably, a myrmecophile’s level of integration in the colony or 

its brood predation tendency is not linked with the intensity of the aggression response 

of the host. We found that some potential brood predators are poorly integrated, but 

others manage to live and are attracted to the brood chambers. Some brood predators 

appear thus to be in the lead in an evolutionary arms race with their host, as the host 

does not recognize them as a dreadful foe or do not manage to repel them from the 

brood chambers. Further investigations will lead to a better understanding in the 

dynamics between host and parasite and will explore mechanisms which make the 

presence of brood predators among the brood evolutionary stable. 
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APPENDIX CHAPTER 5 

Appendix 5-1: Is the aggression response of RWA wor kers towards 
myrmecophiles elevated when these myrmecophiles are  collected in 
other RWA nests?  
In this behavioural experiment, we tested whether the aggression response of F. rufa 

(West-Vleteren colony) workers towards myrmecophiles collected in the same West-

Vleteren colony (“local rufa treatment”) was different from the aggression response of 

those F. rufa workers (of the same West-Vleteren colony) towards myrmecophiles 

collected in F. polyctena colonies (“polyctena treatment”). Experiments followed the 

protocol outlined in the material and method section “Experiment II: Level of aggression 

elicited”. For every replicate different myrmecophile individuals were introduced in the 

test arena. In total, we compared aggression in the “local rufa” treatment with the 

“polyctena” treatment for 12 out of 18 myrmecophiles that were tested in the main 

manuscript. Data on aggression in the local rufa treatment can also be found in Table 

A-5.1. For every tested myrmecophile, we ran a quasibinomial GLM to test whether 

the proportion of aggressive interactions of F. rufa workers in the “local rufa treatment” 

differed from the “polyctena treatment”. Significance was tested with a Likelihood Ratio 

chisquare test implemented in the R package car. P-values are adjusted for multiple 

testing (Benjamini and Hochberg, false discovery rate: Benjamini and Hochberg 

(1995)).  

Aggression of F. rufa workers was similar in the “local rufa” and “polyctena treatment” 

for the 12 tested species (Table A-5.1). If there was local or RWA host-specific 

adaptation, you would expect that F. rufa workers would act more aggressively toward 

myrmecophiles found in F. polyctena mounds than toward inquilines found in their own 

colony. M. paykulli has the highest chemical similarity (see chapter 6) with its host out 

of the 18 myrmecophiles tested in the main document. Nevertheless, these behaviour 

data also suggest that this species lack RWA host-specific chemical adaptation (Table 

A-5.1).  
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Table A-5.1 . Proportion aggressive interactions of F. rufa workers (West-Vleteren) towards myrmecophiles found in F. polyctena 
colonies (“polyctena” treatment) compared with aggression of F. rufa workers (West-Vleteren) towards myrmecophiles found in 
the same F. rufa colony. N = number of individuals tested, 95% CI: 95% confidence interval. P = uncorrected P-values, Pcor = P-
values controlled with the Benjamini-Hochberg method (multiple testing problem). Note that the CI for myrmecophiles in the local 
treatment can be slightly different from those given in 5.2 in the main file. This is because the CI are estimated in different models. 
Here we used per species a quasibinomial model with treatment as factor, in Table 5.2 of the main file we used one quasibinomial 
model with species as factor.  

Species “polyctena” treatment 
 

“Local rufa” treatment 
 

P Pcor 

 
Proportion 
aggressive 
interactions 

N 95% CI  
Proportion 
aggressive 
interactions 

N 95% CI    

Amidobia talpa 0.08 21 0.05-0.12  0.12 22 0.08-0.16  0.141 0.524 
Cyphoderus albinus 0.01 20 0.00-0.02  0.00 15 0.00-0.01  0.257 0.524 
Lyprocorrhe anceps 0.28 14 0.21-0.35  0.25 21 0.19-0.30  0.470 0.564 
Monotoma angusticollis 0.05 25 0.03-0.07  0.03 20 0.02-0.05  0.09 0.524 
Mastigusa arietina 0.73 12 0.64-0.80  (*)      
Monotoma conicicollis 0.05 17 0.03-0.08  0.05 20 0.03-0.07  0.736 0.803 
Myrmetes paykulli 0.14 16 0.10-0.20  0.18 18 0.13-0.24  0.302 0.524 
Notothecta flavipes 0.52 24 0.45-0.59  0.63 21 0.56-0.71  0.035 0.420 
Platyarthrus hoffmannseggii 0.04 20 0.02-0.07  0.05 20 0.03-0.09  0.452 0.564 
Porcellio scaber 0.07 15 0.03-0.13  0.07 10 0.02-0.15  0.994 0.994 
Quedius brevis 0.74 8 0.60-0.85  0.82 12 0.71-0.90  0.318 0.524 
Thiasophila angulata 0.50 31 0.43-0.56  0.45 35 0.39-0.51  0.328 0.524 
Thyreosthenius biovatus 0.28 26 0.22-0.34  0.24 26 0.18-0.29  0.349 0.524 
           

 

(*) The high aggression response of F. rufa towards M. arietina (cf. Exp. I: all 15 

individuals were killed before the end of the experiment, see Fig. cover page chapter 

5, Exp II: proportion aggressive interactions = 0.73) was very striking. Here, there could 

also be an effect of host or colony specific chemical adaptation. Unfortunately this 

species was only found in F. polyctena colonies, so we were unable to test whether F. 

rufa provoked higher aggression towards this species when found in the same colony 

or originating from F. polyctena. But there was no chemical similarity at all with F. 

polyctena (chapter 6) for this species. Moreover we also tested aggression of F. 

polyctena workers following the protocol of Exp. II towards two M. arietina individuals 

found in the same F. polyctena colony. Aggression was likewise very high: 

• M. arietina ind. 1: proportion aggressive interactions = 0.65: (of which 4 biting 

interactions) 

• M. arietina ind. 2: proportion aggressive interactions = 0.80: (of which 6 biting 

interactions) 

Individual 1 was even deadly wounded during the aggression tests and died shortly 

after. Given these data, we assume that F. rufa workers would behave in a similar way 

when M. arietina was found in the same colony.



  

 
 

Appendix 5-2: Experimental set-up and distribution of RWA workers and brood at the end of the experime nts. 
Table A-5.2 . Number of individuals recorded at the end of the experiment in the different replicates is given per myrmecophile species. Number of individuals at the beginning of the experiment is given in brackets 
below. All individuals of M. arietina were killed before the end of the experiment. Predation of other myrmecophiles on C. albinus explains its low survival.  
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Table A-5.3. Distribution of workers in the test nest chambers over the different replicates. Brood chambers always supported the largest number of workers and are marked in grey. Total workers at the end of the 
experiment is function of the number of workers (=360) at the start of the experiment, dead workers and workers emerged from pupae during the experiment. 

  Chamber 1 Chamber 2 Chamber 3 Chamber 4 Chamber 5  Chamber 6  Total Workers 

replicate 1 7 252 32 12 24 41  368 

replicate 2 13 137 125 17 7 38  337 

replicate 3 6 13 4 249 19 19  310 

replicate 4 110 130 28 15 9 8  300 

replicate 5 9 44 67 32 32 136  320 

replicate 6 39 26 36 94 115 24  334 

replicate 7 33 141 61 40 37 49  361 

replicate 8 73 145 40 41 26 51  376 

replicate 9 27 66 38 41 105 32  309 

replicate 10 20 20 207 16 23 33  319 

replicate 11 154 152 28 7 16 17  374 

replicate 12 33 12 19 74 74 135  347 

replicate 13 137 81 12 66 23 7  326 

replicate 14 140 37 31 70 18 23  319 

replicate 15 62 69 14 71 161 9  386 

replicate 16 88 18 32 59 42 100  339 
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Arthropods associate with their red wood ant host 
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ABSTRACT 

 

Social insect colonies provide a valuable resource that attracts and offers shelter to a 

large community of arthropods. Previous research has suggested that many specialist 

parasites of social insects chemically mimic their host in order to evade aggression. In 

the present study, we carry out a systematic study to test how common such chemical 

deception is across a group of 22 arthropods that are associated with red wood ants 

(Formica rufa group). In contrast to the examples of chemical mimicry documented in 

some highly specialized parasites in previous studies, we find that most of the rather 

unspecialized RWA associates surveyed did not use chemical mimicry to evade host 

detection. Instead, some species employed a strategy known as “chemical 

insignificance” to evade aggression. Rather than trying to match the chemical 

hydrocarbon profile of their host, these species avoided detection by a suppression in 

the production of hydrocarbon cues. Others showed no disguise at all and were rapidly 

detected by the host, but relied on general defense and flight tactics to evade 

aggression. These results offer key insight into the early steps in which free-living 

arthropods have evolved into specialist social insect parasites.  
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INTRODUCTION 

Organisms throughout the animal and plant kingdom use a variety of chemical 

strategies to deceive other species (Wyatt 2012). They produce signals that mask their 

true nature from the target species, thereby tricking them to believe they are mating 

partners, nestmates, harmless or even mutualistic. Spectacular examples can be 

found in Mastophora bolas spiders that lure male moth prey by imitating the female 

moth sex pheromone (Eberhard 1977) and in the pitchers of carnivorous plants that 

spread the odor of flowers to trap insects (Joel 1988). Chemical deception, however, 

has been most thoroughly explored in parasites of social insects (Kistner 1982, 

Hölldobler and Wilson 1990, van Zweden and d’Ettorre 2010). Previous studies have 

shown that many arthropods succeed in penetrating the social fortresses of their hosts 

and evade aggression by matching the chemical profile of their social insect host (Nash 

and Boomsma 2008, van Zweden and d’Ettorre 2010). Such deception can occur by 

passively acquiring the host’s cuticular hydrocarbons that are used in nestmate 

recognition (“chemical camouflage”) or in some cases even by actively producing them 

(“chemical mimicry”) (Nash and Boomsma 2008, van Zweden and d’Ettorre 2010). We 

will refer to both types of matching as chemical mimicry throughout the rest of the 

document. In a few cases, the secretion of compounds that appease, repel or 

manipulate the host have also been reported (Hölldobler and Wilson 1990, Thomas et 

al. 2002, Akino 2008), whereas a small number of studies have also documented a 

strategy of “chemical insignificance”, whereby arthropods suppress the production of 

hydrocarbons used in nestmate recognition to escape detection (Nash and Boomsma 

2008, van Zweden and d’Ettorre 2010).  

Animals living inside the nest of social insects are known as inquilines. The group of 

arthropod inquilines associated with social insects comprise parasitic social insects 

(here referred to as “social inquilines”) and a wide variety of non-social arthropods 

(Kistner 1982, Hölldobler and Wilson 1990). Current data indicate that chemical 

mimicry is especially common among social inquilines that are phylogenetically related 

to their host (Nash and Boomsma 2008, Buschinger 2009), which is to be expected, 

since their shared ancestry means that the host recognition cues can be imitated 

without requiring specific, entirely novel adaptations (Nash and Boomsma 2008). 

Surprisingly, however, complete or partial chemical mimicry or camouflage has also 

been reported as an integration mechanism in the large majority (45 out of 56 studies, 

Appendix 6-1: Table A-6.1) of the very diverse group of inquiline arthropods that live in 

the nest of a non-related social insect host. Nevertheless, most of these studies are 
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biased in the sense that they have focused mainly on highly specialized parasites, 

which interact very closely with their host. Such species engage in regular grooming 

interactions with their host, solicit food from them, and are often treated as regular 

colony members (Hölldobler and Wilson 1990, Kronauer and Pierce 2011, Parker 

2016). In many cases, these specialized arthropods also combine complex chemical 

adaptations with other advanced strategies such as morphological structures and 

acoustical mimicry (Hölldobler and Wilson 1990, Di Giulio et al. 2015, Parker 2016). 

The true incidence of chemical mimicry in these systems, however, may well be lower 

than presumed, as there likely is a strong publication bias towards studies where such 

adaptations were found. In addition, most studies typically compare only a single or a 

few associates with their host and there have been no studies that systematically 

surveyed and compared mechanisms of chemical integration in a large community of 

arthropods associated with a single host. 

The aim of the present study was to carry out a systematic study of cuticular chemical 

similarity across a group of less specialized, ant-associated arthropods. Such species 

are not accepted in the colony by being groomed, fed or transported in contrast with 

specialized symbionts (Kistner 1982, Hölldobler and Wilson 1990). They are attacked 

or ignored, exhibit limited interaction with their host and elicit aggression to a varying 

degree (Parmentier et al. 2016b). Currently, there is very little information on what 

chemical integration mechanisms or strategies such species use to evade host 

aggression, even though they can provide us with key insight into the early steps of a 

host-parasite co-evolutionary arms race and the way in which free-living arthropods 

may have evolved into specialist parasites. Hence, we here analyzed the chemical 

profiles of a large community of arthropods associated with red wood ants and 

compared them to those of their host workers. Subsequently, we link the chemical data 

with other functional traits of the community. 

 

MATERIALS AND METHODS 

Study system 

As a study system we used red wood ants (Formica rufa group) and their community 

of associated arthropods. In our study region (Northern Belgium and Northern France), 

three of the six species of the F. rufa group can be found: Formica rufa Linnaeus, 1761, 

Formica polyctena Förster,1850 and Formica pratensis Retzius, 1783 (Dekoninck et 

al. 2010). They tend to differ in ecological preferences and in colonial organization 

(Seifert 2007), but the sampled colonies of all species were all polygynous (containing 
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multiple queens) and polydomous (having a colony that spreads out over multiple 

mounds) and all occurred along forest edges. 

Red wood ants (RWAs) support a very diverse community of arthropods. Most RWA 

myrmecophiles live as inquilines inside the nest, whereas other myrmecophiles live 

extranidally in the close vicinity of the nest (Parmentier et al. 2014). Besides obligate 

myrmecophiles, RWA nests also host a wide array of facultative myrmecophiles. These 

species are not strictly associated with ants, but can occur in RWA mounds 

(Parmentier et al. 2014). A large group of myrmecophiles associated with RWAs can 

also be found in nests of other ant species (Parmentier et al. 2014). RWAs also interact 

with aphids outside the nest. These provide sugary honeydew which is a major food 

source for RWAs (Skinner 1980). Aphids can also be considered as myrmecophiles, 

but the focus of this study is on commensalic and parasitic arthropods (Parmentier et 

al. 2016a), so-called synechtrans and synoeketes (Wasmann 1894). However, the 

exact nature of the association of RWA myrmecophiles with their host is poorly known. 

For example, many RWA myrmecophiles also provide mutualistic services to their host 

by preying on other parasitic myrmecophiles in the nest (Parmentier et al. 2016a).  

Sample collection 

Myrmecophiles were collected in three different F. rufa populations (R1: Boeschepe, 

R2: Vladslo, R3: West-Vleteren), six F. polyctena populations (O1: De Haan, O2: 

Beisbroek, O3: Beernem, O4: Aartrijke, O5: Roksem and O6: Herentals) and one F. 

pratensis population (P1: Veltem-Beisem) (Fig. 6.1). In every population, we collected 

samples of a single polydomous colony. Nest material was taken at different locations 

in the nest and was gently spread onto a white tray in the field. All myrmecophiles and 

ants were then collected by using an aspirator, which was regularly cleaned with 

hexane to minimize contamination. An overview of the 18 collected inquiline (intranidal) 

myrmecophiles with some life history traits is given in Table 6.1. In addition to these 

18 RWA inquilines, three RWA myrmecophiles that live extranidally were collected: 

Coccinella magnifica, which is a ladybird (Coccinellidae) closely related to Coccinella 

septempunctata (Sloggett et al. 1998) and adults of the leaf beetle (Chrysomelidae) 

Clytra quadripunctata (larvae live intranidally) were captured on plants around RWA 

mounds, whereas Pella humeralis, a rove beetle (Staphylinidae) that mostly scavenges 

in the neighbourhood of ant trails (Donisthorpe 1927), was found at the periphery of a 

RWA nest. Finally, two facultative myrmecophiles were collected: Porcellio scaber (the 

common rough woodlouse) and the rove beetle Xantholinus linearis. In contrast to the 

myrmecophiles mentioned before, those species can be found away from ants, but are 



 C H A P T E R  6  | 128 

 
 

occasionally found in RWA mounds (Parmentier et al. 2014). Finally, we collected 

individuals of the ladybird C. septempunctata, the free-living relative of C. magnifica. 

Myrmecophiles and ants were kept together with some nest material and transferred 

with a clean forceps to 2 ml glass vials (Sigma-Aldrich) in the lab. Animals were stored 

in the freezer at -18 °C until extraction.  

Chemical analyses 

CHCs from small myrmecophiles and ant workers were extracted for 10 minutes in 30 

µL of hexane (HPLC, Sigma-Aldrich) in 2 ml vials capped with a PTFE septum (Sigma-

Aldrich). Large myrmecophiles (the leaf beetle C. quadripunctata adult + larva, the 

ladybird C. magnifica adult + larva), the ladybird C. septempunctata and the isopod P. 

scaber were extracted in 200 µL of hexane for 10 minutes. Samples were evaporated 

to dryness at room temperature in a laminar flow hood and stored at -18 °C. Prior to 

analysis, samples were redissolved in either 6 µL, 30 µL or 200 µL hexane depending 

on the concentration of cuticular compounds that was present. For small 

myrmecophiles or species with low hydrocarbon concentrations, CHCs of multiple 

individuals were extracted per sample. 2 µL of each hexane extract was injected into 

a SHIMADZU QP 2010 ULTRA coupled gas chromatograph/mass spectrometer 

coupled with a DB-5ms capillary column (30 m x 0.25 mm x 0.25 µm). Samples diluted 

in 6 µL were manually injected, whereas samples diluted in 30 µL and 200 µL were 

injected with an autosampler. The method had an initial temperature profile consisting 

of 1 minute at 70 °C, two temperature ramps from 70 °C to 150 °C at 20 °C min-1 and 

from 150 °C to 320 °C at 3 °C min-1, after which the final temperature of 320 °C was 

held for 15 minutes. We used helium as a carrier gas at a flow rate of 1 mL min-1, 

splitless injection, an inlet temperature of 280 °C, and a final pressure of 75 kPa. The 

electron ionization voltage was auto-tuned to enhance the acquisition performance 

according to the molecular weight of the compounds, and the ion source temperature 

was set to 300 °C. In each batch we ran a linear C7 to C40 linear alkane ladder 

standard (49452-U, Supelco) at two different concentrations (0.001 µg/mL and 0.01 

µg/mL). Retention indices were calculated using cubic spline interpolation (Messadi et 

al. 1990) based on the elution times of the external alkane ladder and compound 

quantities (ng) in the samples were estimated based on the compound peak areas and 

those of the closest eluting alkane in the alkane ladder standard. These calculations 

were done using an in-house developed R script (available from the authors on 

request).  
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Peak identifications were restricted to CHCs with chain lengths between C20 and C40, 

which encompasses the range of CHCs previously described in RWAs (Martin et al. 

2008). The identification and quantification of larger chain length CHCs, which are 

present in Formica ants (Martin et al. 2008), was not possible given the limitations of 

the used column and GCMS system. All detectable CHC peaks in the samples were 

identified and used in the analyses. Hydrocarbons were identified on the basis of their 

retention index, mass spectra and expected fragmentation patterns and diagnostic 

ions. Double bond positions of alkenes were not determined. CHC peak quantities (ng) 

were square root transformed and standardized by the total CHC amount (ng).  

Characteristics of the chemical profile 

Chemical similarity was estimated by the Bray-Curtis (BC) distances between host 

workers and myrmecophiles in terms of their CHC profile based on square-root 

transformed relative quantities (ng). The amount of CHCs produced per unit of cuticular 

surface area (“CHC concentration”, in ng/mm², i.e. corrected for the variation in body 

size) were based on measured absolute CHC quantities (ng) divided by total cuticular 

surface area in a sample. Surface areas were calculated by subdividing the bodies of 

the animals into geometric shapes (detailed methodology, mean species surface and 

number of samples in Appendix 6-2 and Table A-6.2 therein) of which the dimensions 

were determined using a Wild M3 binocular stereomicroscope with a measuring 

eyepiece.  

The proportion of CHC in the chemical profile was measured by dividing the total 

quantities of CHC (all detectable hydrocarbons) by the quantities of CHCs and non-

CHCs (quantities larger than 0.1% of total quantities). This cut-off value was used to 

prevent that noise or contamination would be considered.  

Associations between the different traits of the my rmecophile 
community 
Here we assessed whether BC distance and CHC concentration (ng/mm²) on the 

cuticle were correlated with other functional traits of the RWA myrmecophile 

community explored in previous studies in order to find general patterns in chemical 

integration mechanisms. These functional traits were explored in previous studies 

(Parmentier et al. 2016a, b) and include the trophic position of myrmecophiles using 

δ15N-values, host specificity (categories are here given a rank order: strict specialist = 

4: only records with RWAs; specialist = 3: some records with non RWAs, but RWAs 

are the main host; moderate = 2: records with RWAs, but distribution in non-RWAs 

probably important as well; generalist = 1: myrmecophiles have no preference for a 
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particular ant species, but are always found in presence of ants), level of aggression 

elicited, brood predation tendency and level of nest integration (proportion individuals 

present in brood chambers) (Table 6.1). 

Statistical analyses 

For visualisation of the chemical similarities of the complete CHC profile, we applied 

non-metric multidimensional scaling (NMDS) on the BC distance matrix of the relative 

square root transformed CHC quantities (ng). We selected the square root 

transformation as it minimizes the effect of very large peaks, but still preserves 

quantitative information very well. It can also deal with zero values in contrast with for 

example the widely used Aitchinson transformation (Aitchison 1986). Nevertheless, 

preliminary calculations using untransformed square root transformed and fourth root 

transformed data showed that our data were robust to different types of 

transformations. Apart from the similarity of the total set of hydrocarbons, we examined 

the pattern of similarity with a subset of different classes of hydrocarbons (n-alkanes, 

alkenes, methyl-branched alkanes and dimethyl-branched alkanes) separately. 

Indeed, there is some evidence that ants only use a subset of peaks to recognize 

nestmates (Martin et al. 2008, Guerrieri et al. 2009) and myrmecophiles could therefore 

deceive the host by matching a part of the bouquet. Peaks of a particular class were 

square root transformed and divided by the total (after square root transformation) 

amount of compounds belonging to that class in the profile. For each myrmecophile 

species CHC similarity with workers of the host ant species was tested by an ANOSIM 

permutation (Primer software version 7.0.11, 9999 permutations) test based on the BC 

distance of the standardized CHC abundances. Most myrmecophiles were collected in 

two or even three RWA host species. To account for possible species-specific chemical 

adaptations to their RWA host ant species, we used for these species a two-way 

crossed design in which we included a factor that grouped RWA workers and samples 

of a particular myrmecophile species and a factor which grouped RWA workers and 

myrmecophile individuals collected in nests of the same RWA species. A more detailed 

grouping of workers and myrmecophiles per nest dramatically reduced the maximum 

number of permutations in many species. Therefore we preferred to test the differences 

between RWA workers and myrmecophiles across nests of the same RWA host 

species rather than across individual nests. Number of ants and myrmecophiles used 

for these tests are listed in Table 6.2. For some myrmecophiles, there were too few 

samples to run 9999 permutations and then the maximum possible number of 

permutations was tested (see Table 6.2). The clown beetles (Histeridae) M. paykulli 
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and D. pygmaeus had many compounds in common with their hosts, but lacked some 

compounds which might be present in trace quantities. To avoid that the absence of 

compounds could affect our analysis, we ran similar NMDS ordinations for the 

complete and different subsets of the CHC profile shared by the three RWA species, 

M. paykulli and D. pygmaeus. For this shared CHC dataset, we found that a NMDSs 

ordination based on the Aitchinson transformation (Aitchison 1986) and Euclidean 

distance matrix had lower STRESS (= better representation of the dissimilarities across 

the samples) than a NMDS ordination based on square root transformed data and a 

BC distance matrix (STRESS: 11.8 vs. 14.5). Therefore we selected for the NMDS and 

ANOSIM of the shared data set this transformation and distance matrix. Because of 

the high similarity in the profile of RWA workers and beetles, these myrmecophiles 

might rely not only on species-specific but also on colony-specific adaptations to the 

chemical profile of the supporting colony. As a result, differences between workers and 

either M. paykulli or D. pygmaeus were tested with a two-way crossed ANOSIM in 

which we included a factor that grouped workers and M. paykulli or D. pygmaeus and 

a factor that grouped the workers and beetles collected in the same nests.  

A non-parametric Kruskal-Wallis test was performed to test overall difference in CHC 

concentration and proportion of CHCs. Per myrmecophile species CHC concentrations 

(ng/mm²) differences with CHC concentrations (ng/mm²) of RWAs were tested using a 

Wilcoxon rank sum test with continuity correction.  

The association of the Bray-Curtis distance to the host workers (based on the mean 

BC distance between an individual and workers found in the same nest, see Table 6.1) 

and CHC concentration (ng/mm²) with other functional traits of RWA inquilines were 

tested with Spearman correlations. Extranidal myrmecophiles and larvae of the leaf 

beetle C. quadripunctata were not included in the correlation analyses. This latter lives 

enclosed in a case made of ant nest material and ants do not directly detect the 

chemical composition of the larvae. The same analyses were also performed focusing 

on only the group of 8 inquiline Staphylinidae beetles.  

Confidence intervals of BC distance to the host workers, CHC concentrations and 

proportion CHC found in Table 6.1 were estimated by bootstrapping using package 

boot. Confidence intervals or standard errors of the other parameters of Table 6.1 were 

taken from earlier studies. 

All the analyses were done in R version 3.2.1 (R Core Team 2014). P-values in 

analyses with multiple tests, i.e. ANOSIM permutation tests, Wilcoxon rank sum tests, 

Spearman correlation tests, were corrected for multiple testing using the Benjamini and 

Hochberg procedure (Benjamini and Hochberg 1995). 
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Figure 6.1. Map of the sampled RWA populations in Belgium and Northern France. 

 

RESULTS 

Characteristics of the chemical profile 

120 different CHC peaks were found in total across all our samples (Appendix 6-3: 

Table A-6.3). Some peaks contained different CHCs that could not be separated with 

the described GCMS’s settings. Red wood ants (RWAs) possessed most CHC peaks 

(Formica rufa = 86, Formica polyctena = 87, Formica pratensis = 83) together with the 

clown beetles Myrmetes paykulli (N = 87) and Dendrophilus pygmaeus (N = 78) (Table 

A-6.3). Myrmetes paykulli had 83 out of 87 compounds in common with RWAs, D. 

pygmaeus 76 out of 78. The tested organisms (larvae of two myrmecophiles were 

considered as distinct organisms) differed significantly in the proportion of 

hydrocarbons in their profile (Kruskal-Wallis rank sum test, Chi-squared = 158.86, df = 

24, P < 0.001) (Table 6.1). As expected, the profile of RWA workers comprised almost 

uniquely CHCs (e.g. F. polyctena 0.97, CI: 0.97-0.98). Myrmecophiles, however, varied 

vastly in the proportion of CHC in their chemical cuticular profile. Some species’ profile 

contained akin to their ant host mainly CHC (e.g. M. paykulli 0.95, CI: 0.93-0.96). In 

other species non-CHC ranged from an important part to almost complete domination 

of the profile (e.g. the rove beetle Quedius brevis 0.03, CI: 0.00-0.04). Characteristic 

chemical chromatograms and figures of the RWA hosts and associated myrmecophiles 

are given in Appendix 6-4. 

The NMDS of the standardized CHC quantities separated the RWA workers clearly 

from most myrmecophiles (Fig. 6.2A). This clear distinction in profile between 
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myrmecophiles and their host is confirmed by the ANOSIM permutation tests (Table 

6.2). Whenever the sample size was high enough, myrmecophiles were highly 

significantly different from their host (Table 6.2). A similar distinction between RWA 

workers and myrmecophiles was observed in the analyses with subsets of the CHC 

profile (Fig 6.2B for dimethyl-alkanes, but other subsets generated similar NMDS 

plots). Only the clown beetles (Histeridae) M. paykulli and D. pygmaeus aggregated 

within the RWA cluster (Fig. 6.2A, 6.2B) and showed high similarity in their chemical 

profile with RWAs (Appendix 6-3). More detailed NMDS analyses focusing on the CHC 

compounds that RWA workers and these beetles had in common were also performed. 

The RWA workers clustered in distinct nest-specific clusters. Dendrophilus pygmaeus 

and M. paykulli were not found within the cluster of the host nest, although the latter 

tend to plot closer to their host nest than to other RWA nests (Fig. 6.3A, 6.3B). Similar 

patterns were found for all subsets of the CHC profile (Fig. 6.3B, only plot for dimethyl-

alkanes is provided). Permutation tests showed that M. paykulli (4 separate ANOSIM 

tests for all CHC compounds, alkanes, methyl- and dimethylalkanes, for all tests R > 

0.8, P < 0.001, permutations = 9999) and D. pygmaeus (4 separate ANOSIM tests for 

all CHC compounds, alkanes, methyl- and dimethylalkanes, for all tests R = 1, P = 

0.067, lowest value possible as the max. number of permutations was 15) were 

chemically different from host nest workers: In spite of their similarity in CHCs, they 

also elicited a significant aggression response (Table 6.1). CHC concentration per mm² 

body surface was significantly different across all tested organisms (Kruskal-Wallis 

rank sum test, Chi-squared = 124.85, df = 23, P < 0.001). RWAs were characterized, 

except for one species, by the highest CHC concentration per mm² body surface (mean 

concentration ± SE: 228.6 ng/mm² ± 25.7, Table 6.1, Fig. 6.4).
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Seventeen out of 21 myrmecophiles (for the ladybird Coccinella magnifica and the leaf 

beetle Clytra quadripunctata only the larvae had lower concentrations) had significantly 

lower CHC concentration than RWA workers (Appendix 6-5: Table A-6.4). The lowest 

concentrations were found in the facultative isopod Porcellio scaber (mean 

concentration ± SE: 0.19 ng/mm² ± 0.02, Table 6.1), but also 10 obligate 

myrmecophiles (Table 6.1) had concentrations 10 to 1000-fold lower than RWAs. 

Some species (P. scaber, the rove beetle Stenus aterrimus, the root-eating beetles 

(Monotomidae) Monotoma angusticollis and Monotoma conicicollis, the isopod 

Platyarthrus hoffmannseggii, the spider Thyreosthenius biovatus and the springtail 

Cyphoderus albinus) with very low concentrations of hydrocarbons per mm² of cuticle 

were mostly ignored in aggression trials and are therefore expected to be chemically 

insignificant (Table 6.1). However, other species with very low hydrocarbon 

concentrations (and other compounds as well) were immediately detected and heavily 

persecuted (e.g. the spider M. arietina and the beetle Q. brevis). 
 

Table 6.1 . Functional traits of arthropods associated with RWAs. BC dissimilarity, CHC concentration and CHC proportion were 
determined in this study. Trophic niche: S = scavenger, A = active hunter. Means and confidence interval in brackets are provided, 
for traits with data with unequal variances, ± SE is given. 

Species 
 

Taxon Host specificity BC dissimilarity 
CHC 
concentration 
(ng/mm²) 

CHC proportion 
Brood predation 

tendency 
Trophic level 
(δ15N) / niche 

Prop. in brood 
chamber 

Prop. aggressive interactions 

OBLIGATE INQUILINE          
Amidobia talpa Coleoptera (Staphylinidae) specialist 0.55 [0.50-0.59] 36.1 ± 15.9 0.75 [0.56-0.88] 0.18 [0.06-0.36] 2.7 ± 0.2 / S 0.11 [0.06-0.19] 0.12 [0.08-0.17] 
Dinarda maerkelii Coleoptera (Staphylinidae) specialist 0.63 [0.59-0.66] 78.0 ± 14.4 0.37 [0.15-0.52] 0.52 [0.33-0.72] 3.2 ± 0.2 / S 0.16 [0.07-0.30] 0.27 [0.21-0.33] 
Leptacinus formicetorum Coleoptera (Staphylinidae) specialist 0.67 [0.61-0.72]  6.7 ± 7.7 0.20 [0.07-0.47] 0.81 [0.59-0.95] 6.7 ± 0.3 / A+S 0.12 [0.04-0.23] 0.42 [0.32-0.51] 
Lyprocorrhe anceps Coleoptera (Staphylinidae) specialist 0.64 [0.60-0.68] 34.9 ± 8.4 0.34 [0.17-0.55] 0.51 [0.36-0.67] 3.0 ± 0.2 / S 0.28 [0.16-0.42] 0.25 [0.19-0.31] 
Notothecta flavipes Coleoptera (Staphylinidae) specialist 0.70 [0.67-0.73] 144.9 ± 24.2 0.86 [0.76-0.92] 0.96 [0.83-1.00] 2.6 ± 0.5 / S 0.28 [0.15-0.44] 0.63 [0.56-0.70] 
Quedius brevis Coleoptera (Staphylinidae) moderate 0.93 [0.92-0.94] 11.2 ± 3.0 0.01 [0.01-0.03] 0.93 [0.73-0.99] 5.7 ± 0.4 / A+S 0.00 [0.00-0.10] 0.82 [0.74-0.88] 
Stenus aterrimus Coleoptera (Staphylinidae) strict specialist 0.87 [0.86-0.89] 0.4 ± 0.1 0.01 [0.01-0.02] 0.00 [0.00-NA] 5.2 ± 0.2 / A 0.10 [0.03-0.22] 0.13 [0.08-0.18] 
Thiasophila angulata Coleoptera (Staphylinidae) specialist 0.49 [0.47-0.52] 80.7 ± 14.5 0.41 [0.29-0.54] 0.98 [0.90-1.00] 4.2 ± 0.2 / S 0.37 [0.27-0.48] 0.45 [0.40-0.50] 

Emphylus glaber Coleoptera (Cryptophagidae) specialist 0.73 [0.69-0.77]  0.03 [0.01-0.09]  3.4 ± 0.2  0.30 [0.16-0.50] 

Monotoma angusticollis Coleoptera (Monotomidae) strict specialist 0.69 [0.66-0.72] 1.5 ± 0.3 0.10 [0.06-0.17] 0.68 [0.49-0.83] 3.6 ± 0.8 / S 0.23 [0.12-0.38] 0.03 [0.01-0.06] 
Monotoma conicicollis Coleoptera (Monotomidae) strict specialist 0.30 [0.23-0.38] 4.1 ± 2.8 0.46 [0.20-0.75] 0.50 [0.29-0.71] 3.0 ± 0.7 / S 0.33 [0.21-0.47] 0.05 [0.02-0.08] 
Dendrophilus pygmaeus Coleoptera (Histeridae) specialist 0.16 [0.13-0.20] 91.8 ± 26.4 0.95 [0.84-0.99] 1.00 [NA-1.00]  0.00 [0.00-0.13] 0.19 [0.10-0.31] 
Myrmetes paykulli Coleoptera (Histeridae) specialist 0.14 [0.13-0.16] 107.6 ± 15.2 0.95 [0.92-0.97] 0.67 [0.46-0.83] 5.9 ± 0.6 / S 0.11 [0.04-0.25] 0.23 [0.13-0.25] 
Mastigusa arietina Araneae (Dictynidae) moderate 0.71 [0.68-0.75] 1.3 ± 0.4 0.15 [0.07-0.28] 0.10 [0.01-0.36] 5.9 ± 0.7 / A  0.73 [0.64-0.81] 
Thyreosthenius biovatus Araneae (Linyphiidae) specialist 0.83 [0.81-0.85] 3.5 ± 2.3 0.02 [0.01-0.03] 0.38 [0.20-0.58] 5.9 ± 0.6 / A 0.22 [0.12-0.36] 0.24 [0.19-0.29] 
Cyphoderus. albinus Collembola (Cyphoderidae) generalist 0.35 [0.30-0.40] 26.2 ± 7.1 0.62 [0.37-0.82] 0.00 [0.00-NA] 2.7 ± 0.3 / S 0.13 [0.06-0.23] 0.00 [0.00-0.02] 
Platyarthrus hoffmannseggii Isopoda (Platyarthridae) generalist 0.59 [0.56-0.62] 7.3 ± 0.1 0.20 [0.12-0.32] 0.60 [0.39-0.79] 5.4 ± 0.1 / S 0.25 [0.15-0.37] 0.05 [0.03-0.09] 
Clytra quadripunctata (larva) Coleoptera (Chrysomelidae) specialist 0.56 [0.49-0.63] 0.6 ± 0.01 0.16 [0.05-0.40] 0.67 [0.48-0.83] 4.0 ± 0.3 / S 0.45 [0.30-0.61] 0.01 [0.00-0.03] (with case) 

0.87 [0.70-0.96] (naked 
larva)  

OBLIGATE, EXTRANIDAL 
MYRMECOPHILE 

         

Clytra quadripunctata (adult) Coleoptera (Chrysomelidae) specialist 0.40 [0.36-0.43] 289.0 ± 15.8 0.97 [0.93-0.99]  5.2 ± 0.6   
Coccinella magnifica adult Coleoptera (Coccinellidae) strict specialist 0.51 [0.48-0.53] 204.2 ± 21.6 0.91 [0.86-0.94]     
Coccinella magnifica larva Coleoptera (Coccinellidae) strict specialist 0.45 [0.49-0.63] 74.4 ±19.6 0.62 [0.46-0.75]     
Pella humeralis Coleoptera (Staphylinidae) moderate 0.22 [0.16-0.30] 115.4 ± NA 0.99     0.13 [0.06-0.24] 

FACULTATIVE INQUILINE 

         

Porcellio scaber Isopoda (Porcellionidae) facultative 0.80 [0.75-0.84] 0.2 ± NA 0.02 [0.01-0.08]  1.6 ± 0.3 / S 0.03 [0.00-0.12] 0.07 [0.03-0.13] 
Xantholinus linearis Coleoptera (Staphylinidae) facultative 0.33 [0.26-0.41] 79.5 ± NA 0.76      



Figure 6.2. Chemical similarity among myrmecophiles and RWA hosts. NMDS plot displays the Bray-Curtis distances among myrmecophiles and RWA hosts: A) for all detected CHCs, B) for all detected dimethyl-
alkanes. RWA workers are represented by colored dots: Formica polyctena (black), F. rufa (red), F.pratensis (blue). Myrmecophiles are indicated with codes of which the color correspond with the color of the host 
species dots. Codes: Amidobia talpa (At), Coccinella magnifica adult (K), C. magnifica larva (k), Clytra quadripunctata adult (C), C quadripunctata larva (c), Cyphoderus albinus (Ca), Dendrophilus pygmaeus (D), 
Dinarda maerkelii (Dm), Emphylus glaber (Eg), Leptacinus formicetorum (Lf), Lyprocorrhe anceps (La), Mastigusa arietina (Mas), Monotoma angusticollis (Ma), Monotoma conicicollis (Mc), Myrmets paykulli (M), 
Notothecta flavipes (Nf), Pella humeralis (Pel), Platyarthrus hoffmannseggii (Ph), Porcellio scaber (Ps), Quedius brevis (Qb), Stenus aterrimus (Sa), Thiasophila angulata (Ta), Thyreosthenius biovatus (Tb), Xantholinus 
linearis (X). Overlapping codes in B) (*): M. angusticollis (3 black, 1 blue), T. biovatus (black), S. aterrimus (blue and black) and (**): S. aterrimus (2 red, 1 black), P. scaber (2 black), M. angusticollis (black), T. biovatus 
(black) and P. hoffmannseggii (black).
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Figure 6.3. Chemical similarity between the clown beetles Myrmetes paykulli, Dendrophilus pygmaeus and RWA hosts. NMDS plot displays the Euclidean distances among M. paykulli, D. 
pygmaeus and RWA hosts: A) for all shared CHCs, B) for all shared dimethylalkanes. RWA workers are represented with a colored number which refers to nest origin and host species. Black 
numbers refer to the 6 F. polyctena nests, red to the 3 F. rufa nests, and blue numbers to the single F. pratensis nest. The code numbers correspond with the numbers in the nest codes in 
Fig.6.1. The first letter of the codes of M. paykulli (9 individuals) and D. pygmaeus (2 individuals) is respectively “M” and “D” followed by the colored number code of the nest in which the 
beetles were collected.
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Table 6.2. Results of ANOSIM permutation tests in which Bray-Curtis distances between myrmecophiles and workers of the RWA 
host species that supported them were compared with the Bray-Curtis distances between different workers of the RWA host 
species. N = number of individuals for each myrmecophile species used in the ANOSIM tests, Nworkers = number of RWA workers 
across the 3 RWA host species which were compared with the myrmecophile species in the ANOSIM tests. In total we sampled 
in Formica rufa: 13 workers, in F. polyctena: 26 workers and in F. pratensis 7 workers.  

 

 

 
Figure 6.4. CHC concentration of RWA workers, inquiline and extranidal myrmecophiles. CHC concentration significant different 
(Benjamini-Hochberg corrected P-values smaller than 0.05) from RWA CHC concentration are indicated with an asterisk (*). 

 

Species  R Permutations  N Nworkers  P BH P 
    F. rufa F. polyctena F. pratensis   

Amidobia talpa 1.00 9999 4 13 26  0.0001 < 0.001 
Clytra quadripunctata adult 1.00 8568 5 13   0.0001 < 0.001 
Clytra quadripunctata larva 1.00 378 2  26  0.0030 0.004 
Coccinella magnifica adult 1.00 9999 13  26 7 0.0001 < 0.001 
Coccinella magnifica larva 1.00 9999 8  26 26 0.0001 < 0.001 
Cyphoderus albinus 0.88 5292 3 13 26  0.0003 < 0.001 
Dendrophilus pygmaeus 0.51 378 2  26  0.0240 0.026 
Dinarda maerkelii 1.00 9999 6 13 26  0.0001 < 0.001 
Emphylus glaber 1.00 560 3 13   0.0020 0.003 
Leptacinus formicetorum 1.00 378 2 13 26  0.0003 0.004 
Lyprocorrhe anceps 1.00 9999 4 13 26 7 0.0001 < 0.001 
Mastigusa arietina 1.00 9999 5  26  0.0001 < 0.001 
Monotoma angusticollis 0.99 9999 8 13 26 7 0.0001 < 0.001 
Monotoma conicicollis 0.99 378 2  26  0.0030 0.004 
Myrmetes paykulli 0.22 9999 9 13 26 7 0.037 0.039 
Notothecta flavipes 1.00 9999 7 13 26  0.0001 < 0.001 
Pella humeralis 0.94 27 1  26  0.0037 0.004 
Platyarthrus hoffmannseggii 0.94 9999 8 13 26 7 0.0001 < 0.001 
Porcellio scaber 1.00 378 2  26  0.0030 0.004 
Quedius brevis 1.00 9999 4 13 26  0.0002 < 0.001 
Stenus aterrimus 0.99 9999 7 13 26 7 0.0001 < 0.001 
Thiasophila angulata 1.00 9999 11 13 26 7 0.0001 < 0.001 
Thyreosthenius biovatus 0.99 9999 10 13 26 7 0.0001 < 0.001 
Xantholinus linearis 1.00 14 1 13   0.0710 0.071 



C H A P T E R  6  | 138 
 

 
 

Association between different traits in myrmecophil e community 

Neither CHC BC distance nor CHC concentration (ng/mm²) was significantly correlated 

with other traits in the community of inquiline myrmecophiles. RWAs did not show 

higher aggression towards species with higher CHC concentration or lower CHC 

similarity (Table 6.1). In addition, no evidence was found that species that preferred 

densely populated brood chambers were more similar in hydrocarbon concentration or 

had lower proportions of CHC than species living at the edges of the nest. Similarly 

when focusing only on the inquiline rove beetles, neither CHC BC distance nor CHC 

concentration was significantly associated with other functional traits. However, 

robustness of the correlations between traits of these small datasets was low as 

indicated by large bootstrap CIs. Ideally, a large number of related myrmecophiles 

should be compared to study general patterns in myrmecophile strategies. 

 

Figure 6.5.  Comparison between cuticular chemical strategies. Upper bar (“literature”) depicts the distribution of strategies of 
inquiline arthropods associated with social insects found in literature, lower bar represents the distribution of strategies found in 
arthropods that live in RWA nests (= “RWA inquilines”). 

 

DISCUSSION 

The present study sheds light on the chemical similarities of the cuticular hydrocarbon 

(CHC) profile of arthropods associated with red wood ants (RWAs). Most arthropods 

studied so far make use of chemical mimicry and camouflage to integrate in the nest 

of the host (Fig. 6.5, Table A-6.1). However we demonstrate that only two arthropods 

associated with RWAs exploit these strategies, whereas the majority seems to rely on 

chemical insignificance or does not show any disguise at all.  

The cuticular hydrocarbon (CHC) profile of the three tested RWA species was 

analogous with previous studies on RWAs (Martin et al. 2008, Włodarczyk 2011). The 

profiles were dominated by odd-chain alkanes, methyl-alkanes, dimethyl-alkanes and 

alkenes and are characterized by relatively heavy CHCs. Martin et al. (2008) 

suggested that chemical species identity in RWAs is mainly based on dimethyl-
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alkanes, which are particularly varied in this group. The clown beetles Dendrophilus 

pygmaeus and Myrmetes paykulli had almost all components in common with the RWA 

workers. However, chemical mimicry was not perfect which is echoed by the fact that 

the beetles are regularly detected and even bitten by the ants (pers. observations TP), 

but their compact tank-like morphology protects them from fatal bites. Moreover, 

Formica rufa aggression towards M. paykulli individuals found in the same nest was 

not lower than towards individuals transferred from a F. polyctena colony (Parmentier 

et al. 2016b). The chemical cuticular profile of the 18 other obligate RWA myrmecophile 

species (inquiline + extranidal) was clearly different from their RWA host (Appendix 6-

4, Fig. 6.2). In contrast with RWAs, non-hydrocarbon compounds, such as alcohols 

and esters contributed significantly and in some cases even dominated the profile. 

These species did not show CHC adaptations specific to their RWA host nest or to 

their RWA host species (Fig. 6.2), which was confirmed by aggression transfer 

experiments performed in 11 species of this group (Parmentier et al. 2016b). For all 

these myrmecophiles, we found that the aggression response of F. rufa workers 

towards individuals found in their nest and towards individuals transferred from F. 

polyctena nests was not significantly different (Parmentier et al. 2016b). Interestingly, 

the majority of these non-mimicking species was characterized by significantly lower 

concentrations of hydrocarbons than their host, which could indicate that they deceive 

their host by adopting a chemical insignificance strategy. The group with low CHC 

concentrations, i.e. the rove beetle Stenus aterrimus, the root-eating beetles 

Monotoma angusticollis and Monotoma conicicollis, the isopod Platyarthrus 

hoffmannseggii, the spider Thyreosthenius biovatus and the springtail Cyphoderus 

albinus provoked hardly any aggression and were mostly ignored. All these species, 

and especially the two Monotoma species, typically walk very slowly, which makes 

their cryptic biology even more efficient. Based on their behavior, their low hydrocarbon 

concentrations and the lack of ant aggression, we assume that these species deceive 

their host by being chemically insignificant. Workers did also not pay attention to the 

facultative myrmecophile Porcellio scaber (common rough isopod). This species had 

extremely low CHC concentrations which could make it preadapted to a cryptic life in 

ant colonies and even in bee hives (Kärcher and Ratnieks 2010). In spite of very low 

CHC-concentrations, some species did not show disguise: the spider Mastigusa 

arietina and the rove beetles Leptacinus formicetorum and Quedius brevis were 

heavily aggressed, bitten and even chased. High aggression towards these species 

could be caused by non-detected compounds (e.g. heavier than C40) or by non-

hydrocarbon compounds that can cause strong aggression response in low 
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concentrations. Naked larvae of the leaf beetle Clytra quadripunctata were fiercely 

attacked, but normally they are protected by a case made of excrements and nest 

material (Donisthorpe 1927) which does not attract the attention of ant workers (Table 

6.1). In case of detection, they can withdraw into the case and block the opening with 

their horny head (Donisthorpe 1927). Rather than matching the profile of the worker 

caste, myrmecophiles might target the sexual castes (Hojo et al. 2009), ant brood 

(Nash et al. 2008) or even nest material. However, the CHC composition of brood, 

sexuals and nest material, is typically only slightly different (Elmes et al. 2002, Hojo et 

al. 2009, Bos et al. 2011, Van Oystaeyen et al. 2014) and could not explain the vast 

differences we observed in the majority of the myrmecophiles. In contrast to many 

parasites that want to mask their identity in the nest (cf. Table A-6.1), mutualists can 

produce distinct compounds or profiles to attract their partner ant species (Richard et 

al. 2007, Hojo et al. 2014). Some of the RWA myrmecophiles might provide some 

indirect mutualistic services (Parmentier et al. 2016a) or they might even mimic the 

distinct profile of true mutualists to mask their identity (cf. aphid predators in (Liepert 

and Dettner 1996, Lohman et al. 2006) ). However, none of the RWA myrmecophiles 

were treated (grooming, transporting, antennae tapping) as mutualists by the ants 

(Parmentier et al. 2016b). Therefore we argue that the tested myrmecophiles do not 

carry or imitate a distinct “mutualist” chemical profile. We also did not find evidence 

that RWA myrmecophiles only match a part of the CHC-profile, as the chemical 

differences were similar across different subsets of the CHC profile.  

There were no general patterns in myrmecophilous strategies used by invertebrates 

found in the RWA community. Slight chemical distances in groups of conspecific 

mound-building Formica ants already lead to overt aggression (Sorvari et al. 2008, 

Martin et al. 2012). Therefore it can be expected that the degree of ant aggression 

towards species with distinct cuticular profiles, as observed in our community, is not 

linearly linked with CHC distance. Rather the absence or presence of specific 

compounds might lead to a different degree of ant aggression. CHC distance and CHC 

concentration were also not related to location in the nest. Counterintuitively, the CHC 

mimicking clown beetle Dendrophilus pygmaeus was always found at the periphery of 

the nest, while species with distinct CHC profiles (e.g. the rove beetle Thiasophila 

angulata) preferred the densely populated brood chambers (Parmentier et al. 2016b). 

It is surprising that in our study system only 2 out of 18 inquiline arthropods closely 

match the CHC profiles of their host, whereas this strategy is found in most arthropods 

living in social insect nests studied up till now (Table A-6.1). This discrepancy could be 
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explained by the specific structure of a RWA nest of which the aboveground part is a 

dome-shaped mound constructed with organic material, needles, twigs and other plant 

material (Gösswald 1989a). This haystack-like structure provides many more hiding 

places for myrmecophiles than classic earth nests found in most temperate ant species 

(Seifert 2007). Detection of myrmecophiles could further be hampered by the relative 

large size of RWAs (Parmentier et al. 2016c). Hence, RWA myrmecophiles might not 

require chemical mimicry as they could easily run away or hide when detected. 

However, the underground part of a RWA nest is very similar to a classic underground 

ant nest and most of the inquilines used in this study were also found there. Moreover, 

the majority of RWA inquilines can easily live in chambers with high-densities of 

workers (Parmentier et al. 2016b). We believe that the aforementioned discrepancy 

can mainly be explained by a biased focus on chemical strategies of rather specialized 

arthropod inquilines up to now. These species are by their behavior and the host’s 

behavior well integrated into the host colony (Hölldobler and Wilson 1990) and elicit 

little or no aggression. Species that mimic their host are for example the caterpillars of 

Maculinea which are treated as true larvae of the colony, Thorictus beetles which cling 

on the antennae of their host (Lenoir et al. 2013) and Varroa mites, which are phoretic 

ectoparasites of bees (Le Conte et al. 2015). The intense interaction of these 

symbionts with their host is likely only possible by chemically matching the host, 

whether or not combined with advanced adaptations at the behavioral and 

morphological level (Hölldobler and Wilson 1990, Barbero et al. 2009b, Di Giulio et al. 

2015). Similarly to these specialized arthropods, parasitic social insects (“social 

inquilines”) intensely interact with their social insect host (Buschinger 2009) and a 

permanent integration is likely only possible by mimicking the host. In contrast with 

these two groups of specialized parasites, associates of the RWA community do not 

interact with their host and do not exhibit behavioral and morphological adaptations 

very different from their non-ant associated relatives (Donisthorpe 1927). They are 

ignored or provoke aggression to different degrees (Donisthorpe 1927, Freude et al. 

1974) and are consequently classified as synechtrans and synoeketes sensu 

(Wasmann 1894). In spite of their weak integration, these species can impose costs 

on their host by preying on brood and stealing food (Parmentier et al. 2016a). Although 

these unspecialized species might outnumber the group of specialized associates 

(Wasmann 1894, Kistner 1979, Parmentier et al. 2014), little is known on their chemical 

integration strategies. The CHC profile of three myrmecophilous beetles that live in the 

vicinity of the nests of Lasius fuliginosus, showed no apparent similarity in CHC 

composition with their host (Stoeffler et al. 2011). The authors suggested that these 
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extranidal beetles show no disguise as they have plenty of hiding places outside the 

nest and hardly interact with their host compared to inquilines found inside nests. Our 

results indicate that unspecialized associates can also survive as inquilines inside 

densely populated nests without mimicking the CHC profile. Some are chemical 

insignificant or protected by a case, but a large group show no cuticular disguise. 

These species might have a similar profile compared to free-living relatives. This is 

suggested by the slight difference in CHC that we observed between the obligate 

myrmecophilous ladybird Coccinella magnifica and its free-living sister species C. 

septempunctata and lower chemical distance of the facultatively myrmecophilous rove 

beetle Xantholinus linearis compared with most other obligately myrmecophilous rove 

beetles (Table 6.1). Species without disguise can survive by rapid, swift movements, 

hiding, death feigning (e.g. the rove beetle Q. brevis), a hard exoskeleton (e.g. the 

clown beetle D. pygmaeus) and possibly by secreting repellent volatiles (Stoeffler et 

al. 2011).  

Our study stresses that the initial transition towards a myrmecophilous life does not 

require advanced chemical strategies. Species might rely on traits or tactics already 

present in their free-living relatives such as chemical insignificance, larval cases and 

tergal glands. These tactics are sufficient to penetrate and exploit a colony and might 

be the onset of the evolution towards advanced chemical (special glands, chemical 

mimicry), morphological and behavioral strategies needed for a complete assimilation 

into colony life as seen in the most specialized myrmecophiles (Parker 2016). 
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APPENDIX CHAPTER 6 

Appendix 6-1: Literature study on the integration s trategies and 
behaviour of inquiline arthropods associated with s ocial insects. 

Table A-6.1.  Integration strategies and behaviour of inquiline arthropods associated with social 
insects. 

Species Family Strategy Behaviour Host(s) Ref. 

      
TERMITOPHILE      

      
Coleoptera       

Philotermes howardi Staphylinidae mimicry 

Beetle solicits and receives 
proctodeal and stomodeal fluids from 
their host and engages in 
allogrooming with them. 

Reticulitermes virginicus [1] [2] 

Trichopsenius depressus Staphylinidae mimicry 

Beetle solicits and receives 
proctodeal and stomodeal fluids from 
their host and engages in 
allogrooming with them. 

Reticulitermes virginicus [1] [2] 

Trichopsenius frosti Staphylinidae mimicry Termite host grooms beetles, 
phoresy. Reticulitermes flavipes [3] [4] 

Xenistusa hexagonalis Staphylinidae mimicry 

Beetle solicits and receives 
proctodeal and stomodeal fluids from 
their host and engages in 
allogrooming with them. 

Reticulitermes virginicus [1] [2] 

      
      
MYRMECOPHILE      

      
Acari       
Unknown Acari insignificance phoretic on pupae and larvae Leptogenys distinguenda [5] 

Araneae       

Cosmophasis bitaeniata Salticidae mimicry 
Spider removes larva from the 
mandibles of a minor worker, spider 
prefers to feed on ant larvae. 

Oecophylla smaragdina [6] [7] ([8] 

Gamasomorpha maschwitzi Oonopidae mimicry (only part of 
explanation 

Spiders were typically observed 
crawling on top of adult workers or 
callows, trail following. 

Leptogenys distinguenda [9][10] 

Coleoptera       

Diomus thoracicus Coccinellidae mimicry 
The larva feeds uniquely on ant 
brood, most of the time they were 
located in the brood piles. 

Wasmannia auropunctata [11] 

Thorictus buigasi Dermestidae mimicry + 
insignificance phoretic,, cling the ant antennae Cataglyphis viatica [12] 

Thorictus martinezi Dermestidae mimicry phoretic,, cling to ant antennae Caraglyphis lenoiri [12] 
Thorictus sulcicollis Dermestidae mimicry phoretic,, cling to ant antennae Cataglyphis hispanica [12] 

Sternocoelis hispanus Histeridae mimicry 
Beetle is found frequently near 
larvae, licked by ants, climb on larvae 
and lick larvae, phoretic. 

Aphaenogaster senilis [13] 

Diaritiger fossulatus Pselaphidae mimicry food begging Lasius fuliginosus [14] 
Unknown Ptiliidae mimicry phoretic on larvae Leptogenys distinguenda [5] 
Myrmecaphodius 

excavaticollis Scarabaeidae mimicry grooming, trophallaxis Solenopsis [15] 

      
Aenictobia fergusoni Staphylinidae mimicry follow ant column, ignored by ants Aenictus sp. 18a of SKY [16] 

Aenictobia thoi Staphylinidae mimicry Beetle follows ant column, ignored by 
ants. 

Aenictus laeviceps [16] 

Aenictoteras malayensis Staphylinidae mimicry follow ant column, palpated, 
myrmecomorph 

Aenictus gracilis [16] 

Aenictoxenus sp. 
(undescribed) Staphylinidae mimicry phoretic on ant’s abdomen Aenictus sp. 18a of SKY [16] 

Chitosa nigrita Staphylinidae mimicry few interactions Aphaenogaster senilis [13] 

Mimaenictus wilsoni Staphylinidae mimicry 
Beetle follows ant column, 
transported and palpated by ants, 
myrmecomorph. 

Aenictus laeviceps [16] 

Rosciszewskia gracilis Staphylinidae mimicry follow ant column, myrmecomorph Aenictus gracilis [16] 
Trachydonia leptogenophila Staphylinidae mimicry trail following Leptogenys distinguenda [5] 

Trichotobia gracilis Staphylinidae trichomes/ 2 peaks 
similar to larvae transported by ants Aenictus gracilis [16] 

Weissflogia rhopalogaster Staphylinidae mimicry myrmecomorph, transported by ants Aenictus sp. 18a of SKY [16] 

Zyras comes Staphylinidae mimicry food begging, antennal 
communication, trail-following 

Lasius fuliginosus [14] 

Diptera       

Dohrniphora kistneri Phoridae 
different profile, 
some similarity with 
ant larvae 

follow ant column, quickly running, 
not palpated 

Aenictus laeviceps [16] 

Dohrniphora sp. 1 Phoridae no mimicry follow ant column, quickly running, 
not palpated 

Aenictus gracilis [16] 

Dohrniphora sp. 2 
(undescribed) Phoridae mimicry follow ant column, quickly running, 

not palpated 
Aenictus sp. 18a of SKY [16] 
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Puliciphora rosei Phoridae insignificance trail following Leptogenys distinguenda [5] 
Rhynchomicropteron 

necaphidiforme Phoridae insignificance trail following Leptogenys distinguenda [5] 

Vestigipoda maschwitzi Phoridae some similarity with 
ant larva mimicking of morphology larva Aenictus gracilis [16] 

Microdon albicomatus Syrphidae mimicry 
Larva and pupae have unique dome-
shaped morphology, specialist brood 
predator 

Myrmica incompleta [17] 

Microdon myrmicae Syrphidae insignificance   [18] 
Gastropoda       
Allopeas myrmekophilos Subulinidae insignificance carried by workers Leptogenys distinguenda [5] 

Hemiptera       

Paracletus cimiciformis Aphididae mimicry 
Specialized morph transported to 
brood pile, where it sucks larva 
haemolymph. 

Tetramorium [19] 

Hymenoptera       

Dilocantha lachaudii Eucharitidae partial mimicry Wasps after emergence are 
transported outside nest. 

Ectatomma tuberculatum [20] 

Isomerala coronata Eucharitidae partial mimicry Wasps after emergence are 
transported outside nest. 

Ectatomma tuberculatum [20] 

Kapala sulcifacies Eucharitidae mimicry 

Larva attaches to foraging workers, 
larva parasitizes larva. Workers 
Workers assist the hatching wasps, 
and exhibit considerable interest 
(antennation, grooming) toward the 
young parasites 

Ectatomma ruidum [21] 

Palaripsis eikoae Aphidiidae mimicry 

The wasp often mounted and rubbed 
against the worker ants and 
sometimes teased them to 
regurgitate food to itself. 

Lasius sakagamii [22] 

Isopoda       
Exalloniscus maschwitzi Oniscidae insignificance phoretic on pupae Leptogenys distinguenda [5] 

Lepidoptera       

Maculinea alcon Lycaenidae mimicry Larva is transported to the brood 
chamber, tended and fed. 

Myrmica rubra, Myrmica 
scabrinodis [18, 23] 

Maculinea teleius Lycaenidae ?  Myrmica [18] 

Maculinea rebeli Lycaenidae mimicry Larva is transported to the brood 
chamber, tended and fed. 

Myrmica schencki [24], [25][26] 

Maculinea nausithous Lycaenidae ?  Myrmica rubra [18] 

Niphanda fusca Lycaenidae mimicry brought by foraging workers to nest, 
trophallaxis 

Camponotus japonicus [27] 

Orthoptera       

Myrmecophilus sp. Myrmecophilidae mimicry 

This species licks the body surfaces 
of ants, disrupts the trophallaxis 
between ants, or is fed liquid food 
from ants by direct mouth-to-mouth 
contact. 

Several ants [28] 

Thysanura       

Malayatelura ponerophila Ateluridae mimicry 

Silverfishes were frequently observed 
moving their body surface directly 
over the cuticle of adult and callow 
worker ants. 

Leptogenys distinguenda [29][10] 

unknown  insignificance few interactions Aphaenogaster senilis [13] 

Thysanura gen. sp.  insignificance follow ant column, phoretic on ant 
abdomen 

Aenictus sp. 18a of SKY [16] 

      
      

BEE ASSOCIATES      
      
Acari       
Varroa jacobsoni Varroidae mimicry specialized ectoparasite Apis mellifera [30] 

Varroa destructor Varroidae mimicry specialized ectoparasite 
Apis mellifera & Apis 
cerana [31][32] 

Diptera       

Braula coeca Braulidae mimicry Specialized cleptoparasites that lives 
on the head and thorax of bees 

Apis mellifera [33] 

Hymenoptera       

Mutilla europaea Mutillidae 

pre-integration: 
insignificance 
post-integration: 
mimicry 

Female velvet ants enter wasp nests, 
lay eggs on host pupae and leave the 
nests. 

Polistes biglumis [34][35] 

Lepidoptera       

Acherontia atropos Sphingidae mimicry Cleptoparasite of nectar and honey, 
no intense interaction with host 

Apis mellifera [36] 

      
      

WASP ASSOCIATES      
      
Coleoptera       

Metoecus paradoxus Rhipiphoridae mimicry 
Larva attaches to a foraging worker 
and is brought to cell where it feeds 
on larva. 

Vespula vulgaris [37] 
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Appendix 6-2: Surface estimation ants and myrmecoph iles 

Ant bodies were subdivided in multiple ellipsoids (head, alitrunk, petiole, gaster, coxa, 

femur, tibia and tarsus). The leg parts were only measured in one front leg and the 

respective areas were multiplied by six (six legs). For the spiders T. biovatus and M. 

arietina, the body plan was simplified to two ellipsoids (prosoma and opisthosoma). In 

addition, the area of a front leg was measured by subdividing it in ellipsoids and 

multiplying its total area with eight (eight legs). Surface areas of all rove beetles, C. 

albinus, C. magnifica (larva), C. quadripunctata (adult) D. pygmaeus, E. glaber, M. 

conicicollis, M. angusticollis and M. paykulli were calculated based on a single ellipsoid 

approximation for the whole body. Surface area of C. quadripunctata larvae was 

estimated by the area of two ellipsoids. The dorsal area of P. hoffmannseggii, C. 

magnifica (adult), C. septempunctata, P. scaber (adult) was calculated by the half of 

an ellipsoid’s area, whereas the flat, ventral area was estimated by the surface of an 

ellipse.  

The approximate surface of the ellipsoids was calculated by using the Knud Thomsen 

formula:  

surfaceellipsoid = 4π·((a1.6075 b1.6075 + a1.6075c1.6075 + b1.6075c1.6075)/3)1/1.6075 

where a refers to the length, b to the width and c to the depth of the ellipsoid. 

 
Table A-6.2. Mean cuticle surface of myrmecophiles and RWA and corresponding concentration of CHC (ng/mm²). Nsamples refers 
to the number of samples of which the CHC concentration was calculated. The surface of individuals of those samples (Nindividuals) 
was first estimated by the method described above. In a pooled sample Nsamples < Nindividuals, the total sample CHC-quantity was 
divided by the sum of the surfaces of all individuals in that sample. 

Species Nindividuals 
Surface ± SD 
(mm²)  

Nsamples 
Concentration  
CHC (ng/mm²) 

Porcellio scaber 6 34.07 ± 3.47 2 0.19 
Stenus aterrimus 7 9.42 ± 1.19 7 0.42 
Clytra quadripunctata larva 2 87.45 ± 43.38  2 0.56 
Mastigusa arietina 5 19.86 ± 1.93 5 1.26 
Monotoma angusticollis 46 4.47 ± 0.38 8 1.49 
Thyreosthenius biovatus 38 5.98 ± 1.28 9 3.51 
Monotoma conicicollis 11 4.81± 0.27 2 4.11 
Leptacinus formicetorum 7 3.46 ± 0.94 2 7.28 
Platyarthrus hoffmannseggii 35 9.90 ± 1.60 8 7.68 
Quedius brevis 3 23.21 ± 023 3 11.19 
Cyphoderus albinus 60 0.73 ± 0.13 3 26.23 
Lyprocorrhe anceps 21 3.05 ± 0.47 4 34.90 
Amidobia talpa 40 1.34 ± 0.13 4 36.05 
Coccinella magnifica larva 8 36.29 ± 11.71 8 74.44 
Dinarda maerkelii 5 10.59 ± 0.09 5 78.03 
Xantholinus linearis 1 17.10 1 79.47 
Thiasophila angulata 39 5.33 ± 0.67 8 80.69 
Dendrophilus pygmaeus 2 10.22 ± 0.00 2 91.84 
Myrmetes paykulli 9 7.34 ± 0.40 9 107.56 
Pella humeralis 1 16.47 1 115.40 
Notothecta flavipes 7 6.96 ± 0.85 7 144.85 
Coccinella magnifica adult 13 65.19 ± 14.69 13 204.16 
RWA worker 36 48.72 ± 8.10  36 228.61 
Clytra quadripunctata adult 5 91.12 ± 12.81 5 289.03 
Emphylus glaber 1 5.46   



  
 

 
 

Appendix 6-3: Overview of cuticular hydrocarbon com position. 
Table A-6.3.  Relative proportions of cuticular hydrocarbons of RWAs and associates, t = traces < 0.0001. Grey row represents the mean, white row the SD of a CHC peak. 
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1 C22 0.0002  0.0002 t 0.0009 - - - - - - 0.0002 0.0004 - - - - - - 0.0011 0.0036 - - - - - - - - 

  0.0002  0.0001 0.0001 0.0019 - - - - - - 0.0001 0.0011 - - - - - - 0.0012 0.0011 NA - - - - - - NA 

2 C23:1 0.0003  0.0009 t - - - - - - - 0.0001 - - - - - - - 0.0002 - - - - - - - - - 

  0.0003  0.0003 t - - - - - - - 0.0001 - - - - - - - 0.0002 - NA - - - - - - NA 

3 C23 0.0103  0.0004 0.0037 - - - 0.0226 0.0402 0.0172 - 0.0004 0.0033 - - 0.0024 - 0.0040 - 0.0019 - 0.0094 0.0009 0.0604 - - 0.0053 - 0.0065 

  0.0045  0.0003 0.0035 - - - 0.0091 0.0354 0.0068 - 0.0001 0.0051 - - 0.0029 - 0.0074 - 0.0013 - NA 0.0018 0.0022 - - 0.0053 - NA 

4 11,9-MeC23 0.0006  t t - - - - - - - - - - - - - - - 0.0003 - - 0.0019 - - - - - - 

  0.0005  t t - - - - - - - - - - - - - - - 0.0004 - NA 0.0055 - - - - - NA 

5 5-MeC23 0.0016  t t - - - - - - - - - - - - - - - 0.0004 - 0.0011 0.0003 - - - - - - 

  0.0014  t t - - - - - - - - - - - - - - - 0.0006 - NA 0.0007 - - - - - NA 

6 3-MeC23 0.0005  - 0.0004 - - - - - - - 0.0004 - - - - - 0.0050 - 0.0011 0.0006 0.0013 0.0053 - - - - - - 

  0.0005  - 0.0005 - - - - - - - 0.0004 - - - - - 0.0140 - 0.0008 0.0011 NA 0.0149 - - - - - NA 

7 x,y-diMeC23 -  - - - - - - - - - - - - - - - - - - - - - - - - - - - 

  -  - - - - - - - - - - - - - - - - - - - NA - - - - - - NA 

8 C24 0.0026  0.0003 0.0016 0.0007 - - 0.0024 0.0010 0.0018 0.0025 0.0011 0.0051 - - 0.0017 - 0.0145 0.0016 0.0032 0.0042 0.0027 0.0156 0.0716 - - 0.0024 - 0.0030 

  0.0014  0.0001 0.0015 0.0014 - - 0.0006 0.0015 0.0006 0.0044 0.0002 0.0014 - - 0.0034 - 0.0367 0.0023 0.0020 0.0019 NA 0.0430 0.0003 - - 0.0020 - NA 

9 x-MeC24 0.0003  - 0.0005 - 0.0023 - - - - - - - - - - - - - - - - - - - - - - - 

  0.0007  - 0.0009 - 0.0027 - - - - - - - - - - - - - - - NA - - - - - - NA 

10 4-MeC24 -  - - - 0.0043 - - 0.0052 - - - - - - - - - - - - - - - - - - - - 

  -  - - - 0.0027 - - 0.0061 - - - - - - - - - - - - NA - - - - - - NA 

11 x-C25:1 0.0182  0.0018 0.0055 - - - - - - 0.0142 0.0018 - - - - - 0.0029 - 0.0089 - 0.0012 0.0363 - 0.1508 - - 0.0025 - 

  0.0186  0.0012 0.0093 - - - - - - 0.0057 0.0011 - - - - - 0.0082 - 0.0104 - NA 0.0360 - 0.1012 - - 0.0075 NA 

12 y-C25:1 0.0005  0.0003 t - - - - - - - - - - - - - - - 0.0001 - - - - 0.5727 - - - - 

  0.0004  0.0001 0.0001 - - - - - - - - - - - - - - - 0.0002 - NA - - 0.2297 - - - NA 

13 C25 0.1179  0.0212 0.0998 0.0136 0.0055 0.0359 0.0829 0.0991 0.0249 0.0092 0.1307 0.1647 0.0226 0.0035 0.0239 0.0379 0.0564 0.0369 0.1343 0.2086 0.1046 0.0525 0.1570 0.2765 0.1465 0.1570 0.0600 0.1492 

  0.0667  0.0088 0.0546 0.0081 0.0035 0.0006 0.0148 0.0694 0.0086 0.0023 0.0004 0.0738 0.0040 0.0050 0.0254 0.0132 0.0154 0.0220 0.0604 0.0481 NA 0.0384 0.0115 0.3308 0.1688 0.0438 0.0789 NA 

14 13,11,9-MeC25 0.0118  0.0013 0.0066 0.0011 0.0861 - 0.0011 0.0008 0.0030 0.0144 0.0040 0.0006 - - - - 0.0033 0.0121 0.0077 0.0091 0.0059 0.0022 - - - 0.0014 - 0.0014 
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0.0061  0.0002 0.0048 0.0012 0.1051 - 0.0008 0.0016 0.0016 0.0133 0.0030 0.0016 - - - - 0.0095 0.0172 0.0057 0.0040 NA 0.0041 - - - 0.0019 - NA 

15 7-MeC25 0.0042  0.0001 0.0004 0.0005 - - 0.0030 0.0005 - 0.0014 0.0015 - - - - - - 0.0023 0.0025 0.0202 0.0049 0.0059 - - - - - - 

  0.0023  t 0.0004 0.0010 - - 0.0009 0.0010 - 0.0024 0.0010 - - - - - - 0.0032 0.0022 0.0085 NA 0.0120 - - - - - NA 

16 5-MeC25 0.0032  0.0001 0.0004 0.0012 - - 0.0001 0.0014 - 0.0033 0.0010 0.0088 - - - - - 0.0015 0.0022 0.0805 0.0030 0.0013 - - - 0.0007 - - 

  0.0019  t 0.0004 0.0025 - - 0.0004 0.0016 - 0.0030 0.0005 0.0051 - - - - - 0.0022 0.0019 0.0197 NA 0.0025 - - - 0.0013 - NA 

17 x,y-diMeC25 0.0003  0.0003 T 0.0106 0.0033 - 0.0011 0.0007 0.0027 - 0.0009 - - - - - - 0.0025 0.0006 0.0053 0.0016 - - - - - - - 

  0.0002  0.0001 T 0.0063 0.0045 - 0.0011 0.0015 0.0020 - 0.0009 - - - - - - 0.0035 0.0003 0.0017 NA - - - - - - NA 

18 3-MeC25 0.0067  0.0005 0.0027 0.0597 - - 0.0059 0.0067 0.0052 0.0023 0.0053 0.0005 - - 0.0048 - 0.0019 0.0137 0.0045 0.1391 0.0233 0.0036 - - - 0.0021 - 0.0014 

  0.0032  0.0002 0.0028 0.0275 - - 0.0023 0.0046 0.0035 0.0020 0.0031 0.0011 - - 0.0069 - 0.0055 0.0194 0.0029 0.0165 NA 0.0056 - - - 0.0026 - NA 

19 5,y-diMeC25 0.0013  0.0001 0.0009 - 0.0062 - - - - - 0.0005 - - - - - 0.0036 0.0026 0.0010 0.2405 - 0.0010 - - - 0.0013 - - 

  0.0008  t 0.0010 - 0.0076 - - - - - 0.0003 - - - - - 0.0101 0.0037 0.0008 0.0668 NA 0.0019 - - - 0.0023 - NA 

20 C26 0.0066  0.0026 0.0052 0.0089 0.0021 - 0.0042 0.0060 0.0033 0.0042 0.0086 0.0096 - 0.0039 0.0071 0.0090 0.0243 0.0229 0.0080 0.0149 0.0056 0.0439 0.0825 - - 0.0095 0.1249 0.0053 

  0.0029  0.0017 0.0048 0.0034 0.0016 - 0.0010 0.0015 0.0006 0.0073 0.0016 0.0027 - 0.0055 0.0056 0.0133 0.0412 0.0163 0.0029 0.0047 NA 0.0600 0.0026 - - 0.0015 0.1239 NA 

21 3,y-diMeC25 0.0012  0.0002 0.0003 0.0133 - - - - - 0.0044 - - - - - - 0.0032 0.0020 0.0013 0.1308 0.0014 0.0003 - - - - - - 

  0.0007  t 0.0003 0.0062 - - - - - 0.0058 - - - - - - 0.0090 0.0028 0.0005 0.0514 NA 0.0009 - - - - - NA 

22 x-MeC26 0.0025  0.0006 0.0017 0.0240 0.0138 - 0.0027 - 0.0056 0.0060 0.0009 - - - - - 0.0090 0.0080 0.0022 0.0331 0.0023 0.0297 0.1165 - - - - - 

  0.0011  0.0002 0.0013 0.0151 0.0152 - 0.0007 - 0.0031 0.0054 0.0006 - - - - - 0.0255 0.0113 0.0018 0.0341 NA 0.0548 0.0061 - - - - NA 

23 4-MeC26 -  - - 0.0095 0.0314 - - 0.0225 - - 0.0005 - - - - - - - 0.0006 0.0114 - - - - - - - - 

  -  - - 0.0095 0.0205 - - 0.0127 - - 0.0003 - - - - - - - 0.0003 0.0136 NA - - - - - - NA 

24 2-MeC26 -  - - 0.0075 - - - - - - - - - - - - - - - - - - - - - - - - 

  -  - - 0.0039 - - - - - - - - - - - - - - - - NA - - - - - - NA 

25 w-C27:1 0.0380  0.0207 0.0156 0.0094 0.0046 - - 0.0417 - 0.0216 0.0130 - 0.2228 0.0019 - - - - 0.0277 - 0.1398 0.0335 - - - 0.0057 0.0099 0.0052 

  0.0167  0.0069 0.0099 0.0077 0.0043 - - 0.0517 - 0.0190 0.0083 - 0.0779 0.0026 - - - - 0.0356 - NA 0.0349 - - - 0.0047 0.0251 NA 

26 x-C27:1 -  - - - - - - - - - - - - - - - - - - - 0.0027 0.0002 - - - - - 0.0034 

  -  - - - - - - - - - - - - - - - - - - - NA 0.0006 - - - - - NA 

27 y-C27:1 -  - - - - - - - - - - - - 0.0109 - - - - - - - - - - - 0.0016 - - 

  -  - - - - - - - - - - - - 0.0154 - - - - - - NA - - - - 0.0036 - NA 

28 z-C27:1 -  - - - - - - - - - - - - 0.0076 - 0.0379 - - - - - - - - - 0.1386 0.0187 - 

  -  - - - - - - - - - - - - 0.0108 - 0.0132 - - - - NA - - - - 0.0410 0.0562 NA 

29 C27 0.0997  0.0587 0.1203 0.0815 0.0269 0.0607 0.1010 0.2299 0.0470 0.0089 0.1777 0.1689 0.1136 0.0921 0.0851 0.0573 0.0722 0.0719 0.1142 0.0530 0.0442 0.0284 - - 0.1915 0.1743 0.2273 0.0774 

  0.0622  0.0353 0.0792 0.0269 0.0144 0.0029 0.0223 0.0757 0.0116 0.0010 0.0522 0.0391 0.0744 0.0097 0.0417 0.0142 0.0412 0.0210 0.0463 0.0467 NA 0.0324 - - 0.1952 0.0488 0.1711 NA 

30 x,y-diMeC26 -  - - 0.3059 - - - - - - - - - - - - - - - - - - - - - - - - 

  -  - - 0.0242 - - - - - - - - - - - - - - - - NA - - - - - - NA 

31 13,11,9-MeC27 0.0252  0.0048 0.0130 0.0035 0.0591 0.0348 0.2023 0.0679 0.0970 0.0297 0.0135 - - 0.0070 - 0.0309 0.0192 0.0671 0.0131 0.0020 0.0802 0.0380 - - 0.0309 0.0030 - 0.0074 

  0.0130  0.0010 0.0065 0.0044 0.0635 0.0045 0.0258 0.0533 0.0532 0.0148 0.0078 - - 0.0099 - 0.0306 0.0309 0.0174 0.0083 0.0025 NA 0.0505 - - 0.0818 0.0030 - NA 

32 7-MeC27 0.0047  0.0008 0.0017 0.0089 0.0008 0.0622 0.1092 0.0236 0.0140 0.0059 0.0038 - - 0.0025 - - 0.0104 - 0.0036 - 0.0074 0.0110 - - - 0.0025 - 0.0013 

  0.0051  0.0002 0.0014 0.0034 0.0011 0.0309 0.0377 0.0196 0.0131 0.0029 0.0006 - - 0.0036 - - 0.0152 - 0.0030 - NA 0.0152 - - - 0.0047 - NA 
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33 5-MeC27 0.0016  0.0003 0.0009 0.0160 - - 0.0018 0.0016 - 0.0007 0.0026 0.0950 - - - - - - 0.0013 0.0085 0.0041 0.0020 - - - 0.0289 - - 

  0.0013  0.0001 0.0008 0.0060 - - 0.0017 0.0017 - 0.0013 0.0001 0.0402 - - - - - - 0.0011 0.0075 NA 0.0058 - - - 0.0180 - NA 

34 11,15-diMeC27+9,y-diMeC27 0.0018  0.0009 0.0010 0.0017 0.0065 - 0.0623 0.0329 0.0464 - 0.0020 0.0101 - - - - 0.0042 - 0.0014 - 0.0015 0.0022 - - - 0.0018 - - 

  0.0018  0.0002 0.0015 0.0035 0.0055 - 0.0140 0.0261 0.0228 - 0.0003 0.0110 - - - - 0.0120 - 0.0004 - NA 0.0045 - - - 0.0052 - NA 

35 4-MeC27 -  - - 0.0050 - - - - - - - - - - - - - - - - 0.0011 - - - - - - - 

  -  - - 0.0037 - - - - - - - - - - - - - - - - NA - - - - - - NA 

36 7,y-diMeC27 -  - - - - - 0.0988 0.0237 0.0469 - - - - - - - - - - - - - - - - - - - 

  -  - - - - - 0.0193 0.0153 0.0301 - - - - - - - - - - - NA - - - - - - NA 

37 3-MeC27 0.0122  0.0107 0.0055 0.0956 0.0032 - - 0.0120 - 0.0273 0.0110 0.0041 - 0.0115 0.0610 - - 0.0632 0.0164 0.0235 0.0275 0.0014 - - - 0.0175 0.0080 0.0106 

  0.0074  0.0015 0.0016 0.0313 0.0005 - - 0.0076 - 0.0257 0.0067 0.0036 - 0.0162 0.1020 - - 0.0179 0.0124 0.0285 NA 0.0039 - - - 0.0170 0.0240 NA 

38 5,y-diMeC27 0.0034  0.0009 0.0013 - 0.0061 - 0.0110 0.0038 - 0.0018 0.0036 - - - - - - - 0.0023 - 0.0062 0.0018 - - - 0.0136 - - 

  0.0017  0.0001 0.0012 - 0.0074 - 0.0026 0.0013 - 0.0017 0.0010 - - - - - - - 0.0005 - NA 0.0036 - - - 0.0084 - NA 

39 7,y-diMeC27+x,y,z-triMeC29 0.0010  0.0002 t - - - 0.0293 0.0055 0.0156 0.0010 0.0002 - - - - - 0.0031 - 0.0007 - 0.0015 0.0012 - - - - - - 

  0.0012  t t - - - 0.0152 0.0071 0.0104 0.0017 0.0002 - - - - - 0.0088 - 0.0005 - NA 0.0027 - - - - - NA 

40 C28 0.0038  0.0030 0.0030 0.0097 0.0066 0.0254 0.0057 0.0085 0.0067 0.0054 0.0035 0.0093 - 0.0093 0.0130 0.0100 0.0223 0.0209 0.0051 0.0068 - 0.0382 - - - 0.0069 - 0.0021 

  0.0015  0.0018 0.0026 0.0047 0.0020 0.0093 0.0015 0.0055 0.0014 0.0078 0.0009 0.0016 - 0.0132 0.0079 0.0140 0.0421 0.0133 0.0027 0.0026 NA 0.0529 - - - 0.0019 - NA 

41 3,y-diMeC27 0.0009  - - - - - 0.0072 - - - - - - - - - - - 0.0004 - - - - - - - - - 

  0.0006  - - - - - 0.0040 - - - - - - - - - - - 0.0006 - NA - - - - - - NA 

42 x-MeC28 0.0033  0.0004 0.0017 0.0400 0.0063 - - 0.0035 0.0023 0.0016 - - - 0.0012 - - - - 0.0016 - 0.0077 0.0002 - - - - - - 

  0.0022  0.0001 0.0016 0.0176 0.0044 - - 0.0021 0.0011 0.0014 - - - 0.0017 - - - - 0.0009 - NA 0.0006 - - - - - NA 

43 x,y-diMeC28 -  - - 0.0073 - - 0.0054 0.0018 0.0073 - - - - - - - - - - - 0.0019 - - - - - - - 

  -  - - 0.0077 - - 0.0073 0.0023 0.0036 - - - - - - - - - - - NA - - - - - - NA 

44 4-MeC28 -  - - - 0.0695 - - 0.0053 - - - - - 0.0065 - - - - 0.0012 - - - - - - - - - 

  -  - - - 0.0101 - - 0.0035 - - - - - 0.0093 - - - - 0.0006 - NA - - - - - - NA 

45 w-C29:1 -  - - - - - - 0.0280 - - - - - 0.0052 - - - - - - - - - - - - - - 

  -  - - - - - - 0.0359 - - - - - 0.0073 - - - - - - NA - - - - - - NA 

46 x-C29:1 0.0110  0.0061 0.0073 0.0007 - - - 0.1218 - 0.0089 0.0016 - - 0.0059 0.0050 - - - 0.0072 - 0.0469 0.0094 - - - 0.0117 0.0039 0.1247 

  0.0054  0.0035 0.0062 0.0013 - - - 0.1380 - 0.0080 0.0006 - - 0.0084 0.0099 - - - 0.0086 - NA 0.0155 - - - 0.0053 0.0116 NA 

47 y-C29:1 0.0008  - 0.0001 - - - - - - - - - - 0.0632 - - - - 0.0006 - - - - - - 0.1102 - 0.0115 

  0.0005  - 0.0001 - - - - - - - - - - 0.0894 - - - - 0.0012 - NA - - - - 0.0357 - NA 

48 z-C29:1 -  - - - - - - - - - - - - 0.0058 - - - - - - - - - - - 0.0245 - - 

  -  - - - - - - - - - - - - 0.0082 - - - - - - NA - - - - 0.0101 - NA 

49 C29 0.0431  0.0386 0.0431 0.0272 0.0529 0.0787 0.0084 0.0579 0.0240 0.0047 0.0495 0.0821 0.1257 0.0906 0.0738 0.0207 0.0677 0.0424 0.0474 0.0014 0.0059 0.0422 0.2280 - 0.1268 0.0386 0.2140 0.0215 

  0.0250  0.0251 0.0283 0.0132 0.0052 0.0110 0.0027 0.0307 0.0074 0.0023 0.0165 0.0106 0.0657 0.0304 0.0415 0.0191 0.0332 0.0290 0.0438 0.0018 NA 0.0357 0.0155 - 0.0879 0.0174 0.2428 NA 

50 x,y-diMeC28 -  - - 0.0056 - - - - - - - - - - - - - - - - - - - - - - - - 

  -  - - 0.0112 - - - - - - - - - - - - - - - - NA - - - - - - NA 
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51 15,13,11,9-MeC29 0.0239  0.0057 0.0098 0.0097 0.0302 0.0488 0.0167 0.0131 0.0398 0.0269 0.0174 0.0004 - 0.0099 - - 0.0510 0.0562 0.0132 - 0.0929 0.0410 - - - 0.0137 0.0045 0.0129 

  0.0136  0.0011 0.0060 0.0067 0.0043 0.0141 0.0027 0.0047 0.0186 0.0043 0.0042 0.0010 - 0.0140 - - 0.0302 0.0054 0.0094 - NA 0.0475 - - - 0.0113 0.0135 NA 

52 7-MeC29 0.0041  0.0036 0.0012 0.0246 0.0019 - 0.0721 0.0182 0.0113 0.0020 0.0038 - - 0.0020 - - 0.0017 0.0033 0.0029 - 0.0088 0.0028 - - - 0.0169 - - 

  0.0042  0.0010 0.0008 0.0203 0.0012 - 0.0198 0.0159 0.0065 0.0017 0.0006 - - 0.0028 - - 0.0047 0.0047 0.0020 - NA 0.0048 - - - 0.0362 - NA 

53 5-MeC29 0.0007  0.0004 0.0008 0.0051 0.0023 - 0.0029 0.0030 - - 0.0007 0.0767 - - - - - - 0.0013 - 0.0011 - - - - 0.0031 - 0.0020 

  0.0004  0.0002 0.0011 0.0025 0.0005 - 0.0006 0.0035 - - 0.0001 0.0369 - - - - - - 0.0009 - NA - - - - 0.0026 - NA 

54 4-MeC29 -  - - - - - - - - - - - - 0.0465 0.0008 - - - - - - - - - - - - - 

  -  - - - - - - - - - - - - 0.0254 0.0015 - - - - - NA - - - - - - NA 

55 x,y-diMeC29+7,y-diMeC29 0.0052  0.0038 0.0018 0.0023 0.0098 - 0.0768 0.0229 0.0459 0.0035 0.0021 0.0023 - 0.0200 - - - 0.0460 0.0036 - 0.0381 0.0038 - - - 0.0167 - - 

  0.0038  0.0009 0.0016 0.0045 0.0025 - 0.0044 0.0191 0.0227 0.0031 0.0011 0.0035 - 0.0283 - - - 0.0053 0.0022 - NA 0.0057 - - - 0.0097 - NA 

56 3-MeC29+5,y-diMeC29 0.0043  0.0008 0.0047 0.0181 0.0077 - - - - - 0.0055 - - 0.0433 0.2911 - - 0.0107 0.0047 - 0.0098 0.0003 - - - - - 0.0018 

  0.0018  0.0002 0.0021 0.0120 0.0026 - - - - - 0.0003 - - 0.0246 0.0738 - - 0.0151 0.0038 - NA 0.0010 - - - - - NA 

57 x,y,z-triMeC29 0.0005  0.0003 t - - - 0.0213 0.0020 0.0106 - 0.0001 - - - - - - - 0.0002 - - - - - - - - - 

  0.0010  0.0001 t - - - 0.0078 0.0026 0.0052 - 0.0001 - - - - - - - 0.0001 - NA - - - - - - NA 

58 C30 0.0028  0.0015 0.0023 0.0022 0.0089 0.0254 0.0006 0.0022 0.0026 0.0055 - 0.0058 - 0.0063 0.0083 - 0.0207 0.0032 0.0077 - 0.0045 0.0399 - - - 0.0022 - 0.0021 

  0.0010  0.0008 0.0016 0.0027 0.0027 0.0056 0.0009 0.0017 0.0003 0.0079 - 0.0076 - 0.0089 0.0056 - 0.0380 0.0045 0.0113 - NA 0.0533 - - - 0.0019 - NA 

59 3,y-diMeC29 -  - - 0.0152 - - - - - - - - - - - - - - - - - - - - - 0.0016 - - 

  -  - - 0.0133 - - - - - - - - - - - - - - - - NA - - - - 0.0038 - NA 

60 x-MeC30 0.0024  0.0007 0.0015 0.0246 0.0097 - 0.0014 - 0.0029 0.0014 0.0018 - - - - - - 0.0069 0.0016 - 0.0054 0.0002 - - - - - 0.0015 

  0.0017  0.0001 0.0012 0.0492 0.0036 - 0.0001 - 0.0006 0.0012 0.0003 - - - - - - 0.0097 0.0009 - NA 0.0006 - - - - - NA 

61 x,y-diMeC30 -  - - - - - - - - - - 0.0014 - - - - - - - - 0.0015 - - - - - - - 

  -  - - - - - - - - - - 0.0030 - - - - - - - - NA - - - - - - NA 

62 4-MeC30 -  - - - 0.0513 - - 0.0096 - - - - - 0.0073 0.0136 - - - 0.0010 - - - - - - - - - 

  -  - - - 0.0260 - - 0.0097 - - - - - 0.0104 0.0098 - - - 0.0008 - NA - - - - - - NA 

63 v-C31:1 -  - - - - - - - - - - - - - - - - - - - 0.0013 - - - - - - - 

  -  - - - - - - - - - - - - - - - - - - - NA - - - - - - NA 

64 6,10-diMeC30 -  - - 0.0029 - - - - - - - - - - - - - - - - - - - - - - - - 

  -  - - 0.0035 - - - - - - - - - - - - - - - - NA - - - - - - NA 

65 3-MeC30 -  - - - - - - - - - - - - - 0.0337 - - - - - - - - - - - - - 

  -  - - - - - - - - - - - - - 0.0107 - - - - - NA - - - - - - NA 

66 w-C31:1 -  - - - - - - - - - - - - 0.0072 - - - - - - - - - - - - - 0.0119 

  -  - - - - - - - - - - - - 0.0102 - - - - - - NA - - - - - - NA 

67 x-C31:1 0.0194  0.0205 0.0181 0.0011 0.0123 - - - - 0.0104 0.0078 0.0332 - 0.0849 0.0025 - 0.2037 0.0527 0.0130 - 0.0294 0.0182 - - - 0.0142 - 0.1921 

  0.0071  0.0044 0.0140 0.0023 0.0100 - - - - 0.0092 0.0021 0.0365 - 0.0771 0.0051 - 0.1009 0.0328 0.0109 - NA 0.0204 - - - 0.0048 - NA 

68 y-C31:1 -  - - - - - - - - - - - - 0.0814 - - - - - - - - - - - 0.0018 - 0.0027 

  -  - - - - - - - - - - - - 0.0782 - - - - - - NA - - - - 0.0046 - NA 
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69 z-C31:1 -  - - - - - - - - - - - - 0.0330 - - - - - - - - - - - - - - 

  -  - - - - - - - - - - - - 0.0467 - - - - - - NA - - - - - - NA 

70 4,8-diMeC30 -  - - 0.0033 0.0044 - - - - - - - - - - - - - - - - - - - - - - - 

  -  - - 0.0067 0.0018 - - - - - - - - - - - - - - - NA - - - - - - NA 

71 C31 0.0171  0.0234 0.0255 0.0072 0.0347 0.0598 0.0013 0.0205 0.0033 - 0.0099 0.0255 - 0.0151 0.0423 - 0.0278 0.0342 0.0219 - 0.0016 - - - - 0.0079 0.0031 0.0100 

  0.0088  0.0130 0.0156 0.0034 0.0136 0.0284 0.0011 0.0166 0.0011 - 0.0021 0.0162 - 0.0213 0.0493 - 0.0498 0.0361 0.0194 - NA - - - - 0.0169 0.0094 NA 

72 2,6-diMeC30 -  - - 0.0059 - - - - - - - - - - - - - - - - - - - - - - - - 

  -  - - 0.0097 - - - - - - - - - - - - - - - - NA - - - - - - NA 

73 15,13,11,9-MeC31 0.0260  0.0109 0.0167 0.0100 0.0488 0.0388 0.0043 0.0075 0.0110 0.0329 0.0268 0.0104 - 0.0390 0.0010 - 0.0362 0.0567 0.0178 - 0.0422 0.0126 - - - 0.0133 0.0074 0.0242 

  0.0101  0.0020 0.0076 0.0080 0.0300 0.0168 0.0023 0.0026 0.0024 0.0057 0.0040 0.0069 - 0.0278 0.0020 - 0.0335 0.0177 0.0076 - NA 0.0146 - - - 0.0168 0.0172 NA 

74 7-MeC31 0.0015  0.0036 0.0011 0.0157 0.0026 - - - 0.0022 0.0015 0.0025 - - - 0.0034 - - - 0.0026 - 0.0017 0.0003 - - - - - 0.0017 

  0.0006  0.0006 0.0008 0.0128 0.0004 - - - 0.0011 0.0013 0.0008 - - - 0.0067 - - - 0.0015 - NA 0.0008 - - - - - NA 

75 5-MeC31 0.0004  0.0037 0.0013 - - - 0.0013 - - - 0.0005 0.2222 - - - - - - 0.0021 - - - - - - - - 0.0021 

  0.0006  0.0005 0.0016 - - - 0.0012 - - - 0.0002 0.0950 - - - - - - 0.0015 - NA - - - - - - NA 

76 9,y,11,y,13,y-diMeC31 0.0123  0.0056 0.0053 0.0011 0.0246 - 0.0007 0.0027 0.0111 0.0142 0.0073 - - - - 0.0689 - 0.0175 0.0066 - 0.0276 0.0116 - - - 0.0025 - - 

  0.0064  0.0014 0.0057 0.0022 0.0183 - 0.0011 0.0025 0.0037 0.0120 0.0018 - - - - 0.0325 - 0.0248 0.0046 - NA 0.0166 - - - 0.0036 - NA 

77 7,y-diMeC31 0.0016  0.0023 0.0004 - - - - - - - 0.0011 - - - - - - 0.0030 0.0006 - - - - - - - - - 

  0.0019  0.0006 0.0006 - - - - - - - 0.0005 - - - - - - 0.0043 0.0007 - NA - - - - - - NA 

78 3-MeC31+5,y-diMeC31 0.0039  0.0029 0.0025 0.0023 0.0088 - - 0.0016 0.0032 0.0019 0.0052 - - 0.0075 0.1801 - - 0.0102 0.0048 - 0.0064 - - - - 0.0022 - - 

  0.0013  0.0005 0.0017 0.0046 0.0062 - - 0.0014 0.0010 0.0016 0.0003 - - 0.0105 0.0726 - - 0.0144 0.0049 - NA - - - - 0.0032 - NA 

79 C32 0.0029  0.0021 0.0023 - 0.0053 - - 0.0031 0.0021 0.0055 0.0001 0.0004 - - 0.0009 - 0.0111 0.0022 0.0029 0.0030 0.0059 0.1053 - - - 0.0020 - 0.0030 

  0.0011  0.0006 0.0013 - 0.0028 - - 0.0022 0.0003 0.0068 t 0.0009 - - 0.0018 - 0.0314 0.0031 0.0022 0.0025 NA 0.1180 - - - 0.0026 - NA 

80 3,y-diMeC31 -  - - - - - - - - - 0.0017 - - - - - - - 0.0005 - - - - - - - - - 

  -  - - - - - - - - - 0.0004 - - - - - - - 0.0008 - NA - - - - - - NA 

81 x-MeC32 0.0036  0.0018 0.0027 0.0140 0.0125 - - 0.0043 0.0034 0.0061 0.0038 - - - - - - 0.0059 0.0041 - 0.0036 0.0018 - - - - - 0.0043 

  0.0016  0.0004 0.0017 0.0044 0.0062 - - 0.0047 0.0007 0.0035 0.0011 - - - - - - 0.0084 0.0030 - NA 0.0037 - - - - - NA 

82 12,16-diMeC32 0.0062  0.0017 0.0033 0.0011 0.0087 - - - 0.0047 0.0046 0.0026 - - - - - - 0.0101 0.0046 - 0.0063 0.0036 - - - - - - 

  0.0026  0.0003 0.0020 0.0022 0.0058 - - - 0.0011 0.0040 0.0006 - - - - - - 0.0143 0.0027 - NA 0.0069 - - - - - NA 

83 4-MeC32 -  - - - 0.0061 - - - - - - - - - - - - - - - - - - - - - - - 

  -  - - - 0.0024 - - - - - - - - - - - - - - - NA - - - - - - NA 

84 x-C33:1 -  - - - - - - - - - - - - 0.0625 - - 0.0068 - - - - 0.0048 - - - - 0.0021 0.0045 

  -  - - - - - - - - - - - - 0.0442 - - 0.0193 - - - NA 0.0079 - - - - 0.0062 NA 

85 y-C33:1 0.0066  0.0330 0.0149 - - - 0.0005 - - 0.0039 0.0058 - - 0.0683 0.0091 - - - 0.0162 - 0.0021 - - - - 0.0023 - 0.0418 

  0.0028  0.0047 0.0118 - - - 0.0010 - - 0.0035 0.0023 - - 0.0094 0.0166 - - - 0.0137 - NA - - - - 0.0030 - NA 

86 4,y-diMeC32 -  - - 0.0014 0.0043 - - - - - - - - - - - - - - - - - - - - - - - 

  -  - - 0.0027 0.0021 - - - - - - - - - - - - - - - NA - - - - - - NA 
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87 C33 0.0036  0.0127 0.0067 0.0054 0.0061 0.0382 0.0007 0.0121 0.0039 - 0.0012 0.0077 - - 0.0021 0.0053 0.0311 - 0.0061 - - 0.0013 - - - - - 0.0037 

  0.0021  0.0087 0.0052 0.0070 0.0017 0.0023 0.0008 0.0156 0.0020 - t 0.0071 - - 0.0041 0.0074 0.0461 - 0.0117 - NA 0.0038 - - - - - NA 

88 17,15,13,11,9-MeC33 0.0341  0.0253 0.0238 0.0028 0.0274 0.0215 0.0038 0.0095 0.0236 0.0409 0.0490 0.0063 - 0.0146 0.0008 0.0224 - 0.0162 0.0295 - 0.0171 0.0113 - - - 0.0070 0.0262 0.0251 

  0.0075  0.0038 0.0081 0.0044 0.0146 0.0109 0.0009 0.0024 0.0065 0.0078 0.0191 0.0034 - 0.0206 0.0017 0.0316 - 0.0229 0.0084 - NA 0.0159 - - - 0.0073 0.0406 NA 

89 7-MeC33 0.0002  0.0006 t 0.0017 - - 0.0018 - 0.0010 - 0.0004 - - - - - - 0.0182 0.0011 - - - - - - - - 0.0066 

  0.0001  0.0002 0.0001 0.0033 - - 0.0007 - 0.0007 - 0.0001 - - - - - - 0.0196 0.0007 - NA - - - - - - NA 

90 5-MeC33 0.0002  - 0.0021 - - - - - - - - 0.0281 - - - - - - - - - - - - - - - - 

  0.0005  - 0.0035 - - - - - - - - 0.0153 - - - - - - - - NA - - - - - - NA 

91 15,19-13,17-,11,21-diMeC33 0.0644  0.0448 0.0526 0.0151 0.0452 0.0655 0.0046 0.0095 0.0568 0.0938 0.0644 0.0027 - 0.0082 0.0224 0.2524 0.0876 0.0669 0.0520 - 0.0388 0.0522 - - 0.0319 0.0109 0.0194 0.0217 

  0.0229  0.0083 0.0258 0.0130 0.0297 0.0092 0.0009 0.0034 0.0151 0.0107 0.0134 0.0045 - 0.0116 0.0372 0.0653 0.0946 0.0532 0.0188 - NA 0.0564 - - 0.0675 0.0148 0.0392 NA 

92 5,y-diMeC33+3-MeC33 0.0033  0.0076 0.0033 0.0006 0.0113 - - - 0.0299 0.0028 0.0054 0.0010 - - - - - 0.0037 0.0046 - 0.0034 0.0007 - - - - - - 

  0.0011  0.0014 0.0018 0.0012 0.0075 - - - 0.0099 0.0024 0.0021 0.0025 - - - - - 0.0053 0.0032 - NA 0.0019 - - - - - NA 

93 C34 0.0039  0.0035 0.0013 0.0018 0.0045 - 0.0002 - 0.0137 0.0058 0.0028 0.0005 - - 0.0127 - 0.0078 - 0.0126 - 0.0028 0.0202 - - - 0.0013 - 0.0059 

  0.0017  0.0004 0.0012 0.0020 0.0022 - 0.0006 - 0.0062 0.0058 0.0003 0.0011 - - 0.0060 - 0.0220 - 0.0251 - NA 0.0293 - - - 0.0018 - NA 

94 3,y-diMeC33 -  - 0.0013 - - - - - - - - - - - - - - - - - - - - - - - - - 

  -  - 0.0019 - - - - - - - - - - - - - - - - - NA - - - - - - NA 

95 x-MeC34 0.0043  0.0039 0.0033 0.0024 0.0071 - - - 0.0036 0.0037 0.0045 0.0036 - - - - - 0.0169 0.0049 - 0.0020 0.0058 - - - - - 0.0050 

  0.0016  0.0006 0.0018 0.0033 0.0026 - - - 0.0011 0.0032 0.0015 0.0089 - - - - - 0.0076 0.0024 - NA 0.0091 - - - - - NA 

96 x,y-diMeC34 0.0157  0.0130 0.0106 0.0020 0.0137 - - - 0.0161 0.0153 0.0117 - - - - - - 0.0058 0.0110 - 0.0069 0.0114 - - - 0.0010 - - 

  0.0063  0.0024 0.0046 0.0026 0.0073 - - - 0.0063 0.0133 0.0017 - - - - - - 0.0081 0.0045 - NA 0.0162 - - - 0.0032 - NA 

97 C35:1 0.0007  0.0222 0.0037 - - - - - - - 0.0004 - - - - - - - 0.0106 - 0.0016 - - - - 0.0007 - 0.0040 

  0.0009  0.0032 0.0040 - - - - - - - 0.0005 - - - - - - - 0.0165 - NA - - - - 0.0023 - NA 

98 C35 0.0002  0.0058 0.0007 - - - - - - - 0.0001 - - - 0.0015 - - - 0.0026 - - - - - - - - - 

  0.0004  0.0042 0.0011 - - - - - - - t - - - 0.0031 - - - 0.0061 - NA - - - - - - NA 

99 17,15,13,11,9-MeC35 0.0195  0.0353 0.0154 0.0012 0.0141 - 0.0036 - 0.0167 0.0261 0.0263 - - - - 0.0263 - 0.0190 0.0217 - 0.0032 0.0102 - - - 0.0079 - 0.0198 

  0.0036  0.0023 0.0053 0.0024 0.0055 - 0.0013 - 0.0056 0.0104 0.0121 - - - - 0.0370 - 0.0268 0.0072 - NA 0.0158 - - - 0.0056 - NA 

100 11,19-,11,23-,11,21-diMeC35 0.1231  0.1229 0.1439 0.0090 0.0480 0.1466 0.0075 0.0043 0.0986 0.2176 0.1337 0.0075 0.2249 0.1142 0.0103 0.1127 0.1873 0.0998 0.1015 - 0.0524 0.1405 0.2839 - 0.4723 0.0300 0.2060 0.0531 

  0.0369  0.0182 0.0535 0.0180 0.0205 0.0141 0.0031 0.0038 0.0395 0.0218 0.0013 0.0063 0.0126 0.1259 0.0132 0.1089 0.1584 0.0769 0.0225 - NA 0.1206 0.0151 - 0.4206 0.0228 0.2157 NA 

101 7,y-,5,y-diMeC35 0.0039  0.0137 0.0270 - 0.0206 - 0.0023 - 0.1321 0.0154 0.0023 - - - - - - - 0.0071 - 0.0017 0.0008 - - - - - 0.0068 

  0.0014  0.0028 0.0159 - 0.0078 - 0.0028 - 0.0672 0.0267 0.0003 - - - - - - - 0.0065 - NA 0.0022 - - - - - NA 

102 x,y,z-triMeC35 -  0.0070 0.0063 - - - - - - - 0.0007 - - - - - - - - - - - - - - - - - 

  -  0.0021 0.0131 - - - - - - - 0.0002 - - - - - - - - - NA - - - - - - NA 

103 C36 0.0042  0.0044 0.0031 0.0101 - - - - 0.0140 0.0083 0.0022 - - - 0.0254 - - - 0.0042 - 0.0021 0.0230 - - - - - 0.0025 

  0.0018  0.0009 0.0017 0.0088 - - - - 0.0071 0.0075 0.0002 - - - 0.0176 - - - 0.0014 - NA 0.0292 - - - - - NA 

104 x-MeC36 0.0034  0.0043 0.0031 0.0022 - - - - - 0.0041 0.0036 - - - - - - 0.0051 0.0033 - - 0.0055 - - - - - - 

  0.0012  0.0006 0.0018 0.0031 - - - - - 0.0035 0.0001 - - - - - - 0.0072 0.0009 - NA 0.0131 - - - - - NA 
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105 x,y-diMeC36 0.0093  0.0153 0.0105 0.0009 0.0121 - - - 0.0091 0.0115 0.0095 - - - - 0.0444 - 0.0076 0.0096 - 0.0037 0.0100 - - - 0.0024 - 0.0091 

  0.0034  0.0027 0.0036 0.0018 0.0046 - - - 0.0043 0.0100 0.0013 - - - - 0.0619 - 0.0107 0.0024 - NA 0.0144 - - - 0.0038 - NA 

106 x,y-diMeC36 t  0.0016 - - - - - - - - t - - - - 0.0825 - - - - - - - - - - - - 

  0.0001  0.0005 - - - - - - - - t - - - - 0.1162 - - - - NA - - - - - - NA 

107 C37:1 0.0003  0.0045 0.0033 - - - - - - - 0.0001 - - - - - - - 0.0019 - 0.0013 - - - - 0.0050 - - 

  0.0004  0.0006 0.0023 - - - - - - - t - - - - - - - 0.0031 - NA - - - - 0.0073 - NA 

108 C37 0.0003  0.0012 0.0002 - - - - - 0.0020 - 0.0001 - - - - - - - 0.0004 - - - - - - 0.0009 - - 

  0.0002  0.0003 0.0004 - - - - - 0.0010 - t - - - - - - - 0.0008 - NA - - - - 0.0024 - NA 

109 19,17,15,13,11,9-MeC37 0.0049  0.0167 0.0046 - - - - - - 0.0072 0.0078 - - - - 0.0812 - - 0.0089 - 0.0016 0.0005 - - - 0.0127 - - 

  0.0013  0.0011 0.0022 - - - - - - 0.0063 0.0007 - - - - 0.0196 - - 0.0059 - NA 0.0013 - - - 0.0091 - NA 

110 11,y,13,y,15,y,17,y-diMeC37 0.0560  0.1264 0.0734 0.0045 0.0400 0.1002 0.0044 - 0.0257 0.1019 0.0815 - - - - 0.0999 - 0.0268 0.0688 - 0.0017 0.0131 - - - 0.0042 - - 

  0.0155  0.0165 0.0222 0.0090 0.0168 0.0146 0.0024 - 0.0096 0.0075 0.0160 - - - - 0.0383 - 0.0379 0.0206 - NA 0.0372 - - - 0.0071 - NA 

111 x,y-diMeC37 0.0046  0.0365 0.0264 - 0.0012 - - - 0.0283 0.0235 0.0022 - 0.1156 - 0.0095 - - 0.0056 0.0093 - - 0.0169 - - - - 0.0094 0.0335 

  0.0025  0.0082 0.0150 - 0.0012 - - - 0.0159 0.0407 0.0002 - 0.1171 - 0.0190 - - 0.0080 0.0073 - NA 0.0456 - - - - 0.0281 NA 

112 x,y,z-triMeC37 0.0011  0.0021 - - - - - - - - - - - - - - - - 0.0002 - - - - - - - - - 

  0.0009  0.0008 - - - - - - - - - - - - - - - - 0.0005 - NA - - - - - - NA 

113 C38 0.0023  0.0018 0.0030 - - - - - - - 0.0012 0.0020 - - 0.0086 - - - 0.0022 - - 0.0048 - - - - - - 

  0.0012  0.0005 0.0027 - - - - - - - 0.0002 0.0032 - - 0.0099 - - - 0.0015 - NA 0.0137 - - - - - NA 

114 x-MeC38 0.0008  0.0031 0.0023 - - - - - - - 0.0009 - - - - - - - 0.0014 - - - - - - - - - 

  0.0003  0.0017 0.0010 - - - - - - - 0.0001 - - - - - - - 0.0014 - NA - - - - - - NA 

115 x,y-diMeC38 0.0048  0.0158 0.0073 0.0006 0.0082 - - - - - 0.0044 - - - - - - - 0.0064 - 0.0026 0.0011 - - - - - - 

  0.0017  0.0056 0.0025 0.0012 0.0030 - - - - - 0.0013 - - - - - - - 0.0021 - NA 0.0030 - - - - - NA 

116 w,z-diMeC38 0.0015  0.0048 0.0130 - - - - - - - 0.0003 - - - - - - - 0.0029 - - - - - - - - - 

  0.0014  0.0010 0.0227 - - - - - - - t - - - - - - - 0.0033 - NA - - - - - - NA 

117 19,17,15,13,11,9-MeC39 0.0009  0.0075 0.0011 - - - - - - - 0.0010 - - - - - - 0.0034 0.0034 - - - - - - 0.0157 - - 

  0.0004  0.0010 0.0006 - - - - - - - 0.0001 - - - - - - 0.0048 0.0038 - NA - - - - 0.0084 - NA 

118 7-MeC39 0.0004  - 0.0004 - - - - - - - - - - - - - - - - - - - - - - - - - 

  0.0006  - 0.0007 - - - - - - - - - - - - - - - - - NA - - - - - - NA 

119 11,15- 15,19- 17,21- 13,17-diMeC39 0.0327  0.0827 0.0450 0.0020 0.0294 0.1057 0.0025 - - 0.0733 0.0304 - 0.0621 - 0.0318 - - 0.0144 0.0362 - 0.0143 0.0116 - - - 0.0260 0.0327 0.0307 

  0.0093  0.0116 0.0118 0.0040 0.0091 0.0143 0.0017 - - 0.0091 0.0044 - 0.0503 - 0.0560 - - 0.0203 0.0089 - NA 0.0328 - - - 0.0161 0.0708 NA 

120 5,y-7,y-,9,y-diMeC39 0.0087  0.0478 0.0409 0.0005 0.0186 0.0518 0.0004 - - 0.0490 0.0050 - 0.1126 - 0.0104 - - - 0.0155 - 0.0057 0.0024 - - - 0.0146 0.0201 0.0216 

  0.0045  0.0086 0.0443 0.0010 0.0021 0.0132 0.0010 - - 0.0356 0.0011 - 0.0096 - 0.0179 - - - 0.0099 - NA 0.0067 - - - 0.0125 0.0480 NA 
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Appendix 6-4: Chromatograms red wood ants and assoc iated 
myrmecophiles 
 

1 C22 31 13,11,9-MeC27 61 x,y-diMeC30 91 15,19-13,17-,11,21-diMeC33 

2 C23:1 32 7-MeC27 62 4-MeC30 92 5,y-diMeC33+3-MeC33 

3 C23 33 5-MeC27 63 v-C31:1 93 C34 

4 11,9-MeC23 34 11,15-diMeC27+9,y-
diMeC27 

64 6,10-diMeC30 94 3,y-diMeC33 

5 5-MeC23 35 4-MeC27 65 3-MeC30 95 x-MeC34 

6 3-MeC23 36 7,y-diMeC27 66 w-C31:1 96 x,y-diMeC34 

7 x,y-diMeC23 37 3-MeC27 67 x-C31:1 97 C35:1 

8 C24 38 5,y-diMeC27 68 y-C31:1 98 C35 

9 x-MeC24 39 7,y-diMeC27+x,y,z-
triMeC29 

69 z-C31:1 99 17,15,13,11,9-MeC35 

10 4-MeC24 40 C28 70 4,8-diMeC30 100 11,19-,11,23-,11,21-diMeC35 

11 x-C25:1 41 3,y-diMeC27 71 C31 101 7,y-,5,y-diMeC35 

12 y-C25:1 42 x-MeC28 72 2,6-diMeC30 102 x,y,z-triMeC35 

13 C25 43 x,y-diMeC28 73 15,13,11,9-MeC31 103 C36 

14 13,11,9-
MeC25 

44 4-MeC28 74 7-MeC31 104 x-MeC36 

15 7-MeC25 45 w-C29:1 75 5-MeC31 105 x,y-diMeC36 

16 5-MeC25 46 x-C29:1 76 9,y,11,y,13,y-
diMeC31 

106 x,y-diMeC36 

17 x,y-diMeC25 47 y-C29:1 77 7,y-diMeC31 107 C37:1 

18 3-MeC25 48 z-C29:1 78 3-MeC31+5,y-
diMeC31 

108 C37 

19 5,y-diMeC25 49 C29 79 C32 109 19,17,15,13,11,9-MeC37 

20 C26 50 x,y-diMeC28 80 3,y-diMeC31 110 11,y,13,y,15,y,17,y-diMeC37 

21 3,y-diMeC25 51 15,13,11,9-MeC29 81 x-MeC32 111 x,y-diMeC37 

22 x-MeC26 52 7-MeC29 82 12,16-diMeC32 112 x,y,z-triMeC37 

23 4-MeC26 53 5-MeC29 83 4-MeC32 113 C38 

24 2-MeC26 54 4-MeC29 84 x-C33:1 114 x-MeC38 

25 w-C27:1 55 x,y-diMeC29+7,y-
diMeC29 

85 y-C33:1 115 x,y-diMeC38 

26 x-C27:1 56 3-MeC29+5,y-diMeC29 86 4,y-diMeC32 116 w,z-diMeC38 

27 y-C27:1 57 x,y,z-triMeC29 87 C33 117 19,17,15,13,11,9-MeC39 

28 z-C27:1 58 C30 88 17,15,13,11,9-
MeC33 

118 7-MeC39 

29 C27 59 3,y-diMeC29 89 7-MeC33 119 11,15- 15,19- 17,21- 13,17-
diMeC39 

30 x,y-diMeC26 60 x-MeC30 90 5-MeC33 120 5,y-7,y-,9,y-diMeC39 

        

 

  

Figures: Thomas Parmentier and kindly provided by Lech Borowiec 
scale bar below figures corresponds with 1 mm. 
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Appendix 6-5: Table Post hoc statistical test chapt er 6 
Table A-6.4. Wilcoxon rank sum tests to compare the hydrocarbon concentration between different myrmecophile species and 
RWA workers. 

Species N Hydrocarbons (ng/mm²)  SE W Pcorr 

RWA workers 36 228.6 25.7   
Amidobia talpa 4 36.1 15.9 6 0.002 
Clytra quadripunctata adult 5 289.0 15.8 118 0.325 
Clytra quadripunctata larva 2 0.6 0.01 0 0.004 
Coccinella magnifica adult 13 204.2 21.6 242 0.867 
Coccinella magnifica larva 8 74.4 19.6 46 0.004 
Cyphoderus albinus 3 26.2 7.1 0 0.001 
Dendrophilus pygmaeus 2 91.8 26.4 16 0.294 
Dinarda maerkelii 5 78.0 14.4 29 0.018 
Leptacinus formicetorum 2 6.7 7.7 0 0.004 
Lyprocorrhe anceps 4 34.9 8.4 2 0.000 
Mastigusa arietina 5 1.3 0.4 0 0.000 
Monotoma angusticollis 8 1.5 0.3 0 0.000 
Monotoma conicicollis 2 4.1 2.8 0 0.004 
Myrmetes paykulli 9 107.6 15.2 88 0.048 
Notothecta flavipes 7 144.9 24.2 90 0.301 
Pella humeralis 1 115.4 NA 11 0.678 
Platyarthrus hoffmannseggii 8 7.3 0.1 0 0.000 
Porcellio scaber 2 0.2 0.02 0 0.004 
Quedius brevis 3 11.2 3.0 0 0.001 
Stenus aterrimus 7 0.4 0.1 0 0.000 
Thiasophila angulata 8 80.7 14.5 46 0.004 
Thyreosthenius biovatus 9 3.5 2.3 0 0.000 
Xantholinus linearis 1 79.5 NA 31 0.355 
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ABSTRACT 

  

Myrmecophiles or ant associates are able to penetrate and survive inside the heavily 

defended nests of various ant species. With the exception of some highly specialized 

species, many of these myrmecophiles elicit a highly aggressive response and are 

frequently wounded or even killed by their hosts. Many myrmecophiles also appear to 

strongly prefer particular host species. The factors that allow the myrmecophiles to 

survive in these hostile environments and cause myrmecophiles to prefer particular 

host species are largely unknown. The aim of the present study was to examine the 

impact of the presence or absence of either the preferred host Formica rufa or one of 

several nonpreferred ant species on the long-term survival of three obligate, 

unspecialized beetle myrmecophiles, Thiasophila angulata (Erichson, 1837), 

Lyprocorrhe anceps (Erichson, 1837) and Amidobia talpa (Heer, 1841) and one 

facultative myrmecophile, the woodlouse Porcellio scaber Latreille, 1804. In addition, 

we tested whether host specificity was driven by the size of the ant host workers, 

because host specificity has previously been demonstrated to be inversely related to 

aggression towards macroparasites. Our results show that despite regular aggressive 

host interactions, survival of the obligate myrmecophilous beetles over a period of 20 

days was no different from a control set-up without ants. By contrast, the facultative 

ant associate P. scaber hardly provoked any aggressive host response but its survival 

was lower in presence of F. rufa workers compared to a control set-up without ants. 

Furthermore, the data on survival in presence of 9 different ant host species show that 

the three obligate myrmecophile beetles survived better in presence of larger-bodied 

ant species, and was highest in presence of its preferred host F. rufa, which also has 

relatively large workers. The only exception to this trend was the low survival observed 

in presence of the large-bodied ant Camponotus vagus (Scopoli, 1763). Finally, 

species that were less successful in killing the beetles in our tests are also shown to 

support more myrmecophilous rove beetles in nature. Overall, our results shed new 

light on the interaction between ants and various associated macroparasites and on 

the factors that drive observed host preferences. 
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INTRODUCTION 

Parasites have an intricate relationship with their host on which they can impose 

substantial costs (Poulin 2011). However, hosts have evolved an array of defence 

strategies at the behavioural, immunological and chemical level to counter parasites 

(Hart 1990, Clayton and Moore 1997, Schmid-Hempel 2011). A particularly useful 

system to test host-parasite interactions can be found in the nests of social insects. 

Social insect nests harbour a rich diversity of strictly associated symbionts including 

mutualists, commensals, and parasites (Kistner 1979, Hölldobler and Wilson 1990, 

Rettenmeyer et al. 2010). The parasites can have a dramatic effect on host fitness by 

consuming brood and host resources and inducing queen and worker mortality 

(Hölldobler and Wilson 1990, Schmid-Hempel 1998, Geiselhardt et al. 2007, 

Buschinger 2009, Hovestadt et al. 2012). The main defence response of social insects 

to macroparasites is aggression, in which,they exhibit biting, stinging, spraying 

defensive chemicals and chasing of the intruders (Hölldobler and Wilson 1990, Ayasse 

and Paxton 2002). Some ant associates or myrmecophiles evolved a specialized 

biology (symphiles or true guests sensu Wasmann 1894) and employ a plethora of 

strategies, including advanced behaviours, morphological adaptations, special 

defensive or appeasement glands and chemical mimicry. Such adaptations might 

lower ant aggression and enable the myrmecophiles to successfully integrate in ant 

colonies. What is more, they are treated as true colony members as they are fed, 

groomed and transported by the ants (Hölldobler and Wilson 1990, Akino 2008, van 

Zweden and d’Ettorre 2010, Kronauer and Pierce 2011). However, some 

myrmecophiles are seemingly unspecialized (synechthrans, i.e. indifferently tolerated 

guests, and synoeketes, i.e. hostile persecuted guests, sensu Wasmann 1894): they 

are very similar to their non-myrmecophilous counterparts and lack the aforementioned 

variety of adaptations (Donisthorpe 1927, Hölldobler and Wilson 1990). These 

myrmecophiles might be exposed to frequent ant aggression (Donisthorpe 1927, 

chapter 5: Parmentier et al. 2016b), which can lead to an elevated stress response in 

the myrmecophiles, injuries and ultimately death (Hölldobler et al. 1981, Nelson and 

Jackson 2009, pers. observations TP).  

It is surprising how these myrmecophiles succeed to live in association with their host 

in such a hostile and stressful environment. The long-term effects of the host’s defence 

response for those unspecialized myrmecophiles are unknown. Therefore, the effect 

of the association with host ants on the survival of three unspecialized, parasitic and 

myrmecophilous rove beetles associated with European red wood ants (RWAs) (F. 
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rufa group) was examined. First, 20-day survival of those myrmecophiles with the 

preferred host against survival in a control set-up without host workers was tested. The 

same tests were also done for a facultative myrmecophile (a species that is regularly 

found in ant nests, but is mainly found not to be associated with ants) to look whether 

the effect of host ants is similar on them compared with unspecialized myrmecophiles.  

Surprisingly, many unspecialized myrmecophiles are associated with only a small 

group of ants (Donisthorpe 1927, Päivinen et al. 2002, chapter 1: Parmentier et al. 

2014). The myrmecophiles of this study are restricted to mound building Formica ants. 

It is unclear why these relatively unspecialized myrmecophiles are only associated with 

mound building Formica species. Hitherto, it is unknown which mechanisms constrain 

the distribution of these species. A recent study showed that smaller workers in 

polymorphic RWA colonies are more aggressive and more successful in deterring 

intranidal myrmecophiles (chapter 3: Parmentier et al. 2015b). Consequently, the 

hypothesis under investigation is that ant species with on average smaller workers are 

more efficient in deterring unspecialized myrmecophiles. Interestingly, the mound 

building Formica ants have on average relatively large workers compared with other 

ant species in Europe (Seifert 2007) and support many unspecialized myrmecophiles 

(chapter 1: Parmentier et al. 2014). The relatively large mean worker size of these ants 

compared with other ant species in Europe could play a role in the strict association of 

many of those Formica associates. For that reason, we also assessed the survival of 

the three myrmecophilous beetle species in nests of eight other ant species spanning 

a gradient from one of the smallest to the largest ant species in the study area. We 

hypothesized that the survival rate of the unspecialized myrmecophiles would be 

highest in species with relatively large workers and would decrease in colonies of 

smaller ant species.  

 

MATERIALS AND METHODS 

Study species 

Figure 7.1. Overview of the three myrmecophile beetles with their RWA host: (a) Thiasophila angulata with Formica polyctena, 
(b) Lyprocorrhe anceps with Formica rufa, and (c) Amidobia talpa with Formica polyctena. The myrmecophilous spider 
Thyreosthenius biovatus can also be observed in the centre of b. Photo courtesy: T. Parmentier. 
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We collected adults of three myrmecophilous rove beetles (Staphylinidae, 

Aleocharinae): Thiasophila angulata (Erichson, 1837), Lyprocorrhe anceps (Erichson, 

1837) and Amidobia talpa (Heer, 1841) in European RWA (Formica rufa group) nests 

in populations in Northern Belgium and in Northern France during the summer and 

autumn of 2014 and spring and summer of 2015 (Fig. 7.1). Two populations (West-

Vleteren, Boeschepe) consisted of Formica rufa Linnaeus 1761 mounds, three of 

Formica polyctena Förster, 1850 (Beernem, Roksem, Aartrijke) mounds and both 

species occur sympatrically in the two remaining populations (De Haan and Beisbroek) 

(map see chapter 2: Parmentier et al. 2015a). Beetles were identified following Freude 

et al. (1974). We isolated the myrmecophiles by spreading nest material of Formica 

rufa or Formica polyctena nests on a large tray in the field. Ants and their brood were 

gently put back in the nests afterwards. Donisthorpe (1927) categorized the three 

beetle species following the classification of Erich Wasmann as synoeketes, which 

means that the beetles are rather unspecialized in morphology and behaviour 

compared with advanced myrmecophiles (symphiles) (Wasmann 1894). Synoeketes 

are not treated as colony members, but mostly ignored by the ants due to their small 

size and behaviour (Wasmann 1894). However, we found that the three species are 

detected by the ants and elicited aggression (chapter 5: Parmentier et al. 2016b, 

supplementary videos “Amidobia talpa”, “Lyprocorrhe anceps” and “Thiasophila 

angulata”). Therefore they should rather be categorized in the group of synechtrans 

(unspecialized associates which provoke aggression). The complete life cycle of the 

beetles probably takes place inside the wood ant mounds (Donisthorpe 1927). This 

was supported by the occurrence of the adults in all seasons and the recording of 

larvae of different stages of the beetles inside the mound from spring to autumn (and 

raised in the lab to adults for identification). The larvae are free-living scavengers and 

are not nursed or carried by the workers (personal observations) in contrast with 

specialized beetle larvae such as Lomechusa and Lomechusoides (Hölldobler and 

Wilson 1990). The larvae of T. angulata are very similar to non-myrmecophilous larvae 

of the Aleocharinae and can be reared in absence of ants (Zagaja et al. 2014, pers. 

communication M. Zagaja). The adults are both brood predators and kleptoparasites 

as they prey on ant brood and food brought to the nest (chapter 3, 4: Parmentier et al. 

in press, 2015b). The three beetle species can be found throughout the nest mound 

(edge and centre of the nest). Lyprocorrhe anceps and A. talpa have no nest location 

preference, whereas T. angulata is attracted to the densely crowded brood chambers 

(chapter 5: Parmentier et al. 2016b). Morphological adaptations found in specialized 

myrmecophiles such as appeasement glands with trichomes are lacking in the three 
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beetles (Freude et al. 1974). Freude et al. (1974) only report that the segments of the 

antennae of T. angulata are slightly compressed which could make it more difficult for 

ants to grab them. Their behaviour is also very similar to non-ant associated rove 

beetles. They escape from ant aggression by fleeing, hiding or bending their abdomen 

(Donisthorpe 1927, chapter 3: Parmentier et al. 2015b, supplementary videos 

“Amidobia talpa”, “Lyprocorrhe anceps” and “Thiasophila angulata”). They probably 

excrete chemicals from their bent abdomen, which is a general defence strategy of 

rove beetles (Huth and Dettner 1990). The three beetles have a similar aleocharine 

morphology, but differ in size (T. angulata mean length 10 individuals ± SD = 2.85 mm 

± 0.32, L. anceps mean length 10 individuals ± SD = 2.16 mm ± 0.20, A. talpa mean 

length 10 individuals ± SD = 1.53 mm ± 0.10, Fig. 7.1). In spite of their unspecialized 

myrmecophilous biology, they are very specialized in their host use. Their distribution 

is mainly restricted to European RWAs (F. rufa group) (Donisthorpe 1927, Freude et 

al. 1974, chapter 1: Parmentier et al. 2014) There are also some records for all three 

species in related mound building Formica species. The three species were 

occasionally observed in nests of Lasius fuliginosus (Latreille, 1798) and there is a 

single record of T. angulata in Lasius brunneus (Latreille, 1798) (see references in 

chapter 1: Parmentier et al. 2014), but these are probably infrequently used hosts 

(chapter 1: Parmentier et al. 2014, pers. observations TP). The three beetles are 

obligate myrmecophiles, as they cannot be found away from ants. However, a large 

number of species can occasionally be associated with ants (Donisthorpe 1927, 

Robinson and Robinson 2013, chapter 1: Parmentier et al. 2014). The widespread 

isopod Porcellio scaber Latreille, 1804 (adult size: 9 - 13.5mm, Berg and Wijnhoven 

1997, identified following Berg and Wijnhoven (1997)) lives in a wide variety of habitats 

without ants (Berg and Wijnhoven 1997), but can also be very abundant in RWA 

mounds throughout the whole year (Robinson and Robinson 2013, chapter 1: 

Parmentier et al. 2014). Gravid females and juveniles were regularly observed in the 

mounds, which indicates that P. scaber is able to reproduce in the mounds. Isopods 

were collected in the same way as myrmecophilous beetles in RWA nests during spring 

2015. 

Ant aggression towards tested species 

First, the interaction of F. rufa with the three myrmecophilous beetle species and P. 

scaber was examined. Therefore, a small rectangular plastic arena (length: 8 cm, 

width: 5.5 cm, height: 5 cm) was filled with ca. 1 cm plaster of Paris and coated with 

fluon. Forty F. rufa workers (West-Vleteren population) were acclimatized for one hour 
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to the arena and then a myrmecophile found in the same colony was added. Ten 

seconds after the myrmecophile was introduced, the first twenty interactions with the 

ants were scored. In spite of these relatively short settling times, ants and 

myrmecophiles interacted similarly as in conditions where myrmecophiles were 

already integrated for days in lab nests (pers. observations TP). We also provide data 

of the effect of longer settling time (one hour) on ant aggression towards seven T. 

angulata beetles and compare these with the 10 s settling times (Appendix 7-1). These 

data confirm that longer settling times had no significant effect on the interaction 

between ants and myrmecophiles. Following interactions were observed from the 

perspective of the ant: ignoring (a worker’s behaviour did not change when her antenna 

crossed the myrmecophile), showing interest (a worker started to antennate, turned 

her head or stopped walking or grooming when her antenna crossed the 

myrmecophile), opening mandibles (a worker aggressively opened her mandibles 

when her antennae crosses the myrmecophile), biting (a worker snapped with its 

mandibles and tried to grasp a myrmecophile) and acid spraying (a worker bent her 

gaster and sprayed acid after her antenna crossed the myrmecophile). Biting and acid 

spraying often followed directly after opening mandibles. In these cases only the last 

interaction was recorded. Ant aggression was scored by the proportion of aggressive 

interactions (acid spraying, biting, opening mandibles) out of the first 20 interactions. 

From the perspective of the myrmecophiles, the number out of 20 interactions that 

were directly preceded or followed by abdomen bending were counted. Trials were 

performed in darkness under red light and were recorded with a video camera (SONY 

HDR-XR550VE). Videos were subsequently analysed in VirtualDub 1.10.4 (http://www.

virtualdub.org) which allowed to watch videos frame by frame.  

Survival Experiment 

In this experiment, 20-day survival of the three beetle species in F. rufa nests were 

compared with their survival in a control set-up without ants. Formica rufa workers were 

collected in a highly polydomous population in Boeschepe, Northern France. In 

addition survival of the three beetle species in nests of other ant species, ranging from 

one of the smallest to the largest ant species in the study region, were tested. 

Therefore colony fragments of Solenopsis fugax (Latreille, 1798) (Eastern bank river 

Meuse, Dinant), Tetramorium caespitum (Linnaeus, 1758) (Duinbossen, 

Lombardsijde), Lasius niger (Linnaeus, 1758) (urban region, Oostende), Myrmica 

ruginodis Nylander, 1846 (St-Sixtusbossen, West-Vleteren), Formica cunicularia 

Latreille 1798 (Duinbossen, Lombardsijde), Lasius fuliginosus (Provinciedomein, 
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Raversijde, Aartrijksesteenweg, Aartrijke) were collected in different sites across 

Belgium during the summer and autumn of 2014 and spring and summer of 2015. 

Survival was also tested with Monomorium pharaonis (Linnaeus, 1758) and 

Camponotus vagus (Scopoli, 1763) of which we already had established lab colonies. 

Monomorium pharaonis is an indoor pest in Belgium and does not occur outside 

buildings (Dekoninck et al. 2003). Several colonies of C. vagus have only recently 

established in Belgium and are able to persist outdoors (Dekoninck and Pauly 2002, 

new records WD). Ants were identified using the key provided in Seifert 2007. 

Within one day after collecting the myrmecophiles, between 9 and 13 individuals of 

each rove beetle species were placed together in 1 L plastic, cylindrical containers 

(diameter: 8.5 cm, height: 13.5 cm) with a 1.5-2 cm bottom of plaster of Paris. The top 

5 cm inner wall of the containers were coated with fluon to prevent ants and 

myrmecophiles from escaping through 20 ventilation pin holes made in the container’s 

lid. Myrmecophiles were collected in different RWA populations (F. polyctena and F. 

rufa) across West Flanders, Belgium and in Boeschepe, France to obtain sufficient 

numbers of individuals (Appendix 7-2). The tested myrmecophiles do not closely 

resemble the cuticular hydrocarbon profile of their RWA host colony (chapter 6). 

Moreover, conspecific beetles associated with F. polyctena or F. rufa do not 

substantially differ in their cuticular chemical profile (chapter 6). This lack of chemical 

adaptation to their host is further confirmed by aggression tests (chapter 5: Parmentier 

et al. 2016b Additional file: Table S3 or chapter 5: Table A-5.1). In these tests, we 

compared aggression of F. rufa workers of one colony (West-Vleteren, description see 

chapter 2: Parmentier et al. 2015a) towards myrmecophiles collected in the same 

colony with their aggression towards myrmecophiles found in F. polyctena colonies. 

Interestingly, the aggression response of the F. rufa workers was not significantly 

different towards beetles collected in F. rufa or F. polyctena colonies. Based on these 

chemical and behavioural data, we argue that the myrmecophile’s colony of origin did 

not significantly affect the results of the survival experiments. Another confounding 

factor that might influence myrmecophile survival in our experiments is intra- and 

interspecific competition. However, no aggression between the beetles was observed. 

By providing food ad libitum, negative competition effects on survival were 

minimalized. Depending on the treatment, 100 workers of either F. rufa, F. cunicularia, 

L. fuliginosus, L. niger, M. ruginodis, T. caespitum, M. pharaonis, S. fugax were added. 

Because of their large size, only 50 workers of C. vagus were used (cf. Fig. 7.3). For 

polymorphic species workers of all worker subcastes were used (Fig. 7.3). Workers 

were randomly picked from nests, hence we assume that all worker subcastes (or size 
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cohorts) are represented in numbers similar to their natural distribution. In addition, 

between 9 and 13 individuals per beetle species were added to containers described 

as above, but without adding ants. These containers served as controls. Survival of 

myrmecophiles was monitored every two days for a total period of 20 days. Two cut 

maggots (larvae of Phaenicia sericata), an Eppendorf tube (1.5 mL) filled with water 

and one with honey water were provided. The same food sources were offered in the 

same quantities in the control containers. Eppendorf tubes were sealed with a cotton 

plug soaked in either water or honey water. Maggots were replaced every two days, 

honey water every four days. Dead ant workers were replaced by new workers of the 

corresponding stock colonies every two days. Corpses of myrmecophiles were also 

removed to prevent contamination. The containers were kept in constant dark and at 

room temperature (20°C ± 2°C). Every treatment was replicated between eight and ten 

times (Appendix 7-2 Table A-7.2) with workers of another colony, except for S. fugax, 

M. pharaonis and C. vagus where we only had one colony at our disposal. For these 

species, different workers per replicate were used, but from the same (super)colony. 

Nest material of ant nests was not added to the containers. However myrmecophiles 

were able to hide under dead ants, prey, Eppendorf tubes and cotton made loose by 

the ants. 

Similarly, survival of the facultative nest-inhabitant P. scaber was evaluated in F. rufa 

nests and in a control set-up. Thirty specimens were monitored for 20 days in the 

plastic containers described above. Individuals were counted every four days. The 

treatment group with 100 F. rufa workers and the control were compared and replicated 

eight times (in total 8 x 30 = 240 individuals were tested per treatment). Water and 

honey water as well as two slices of carrot were provided. The latter were replaced 

every four days. Dead isopods were removed and dead workers were replaced every 

four days. For this facultative myrmecophile we also compared survival in containers 

with addition of 25 mL nest material in an additional experiment. We were interested 

whether we would observe the same effect of the ants on the isopods with much more 

hiding places in the nests. Nest material was taken of a deserted F. rufa nest and was 

replaced after 10 days. Here, we only counted survivors after 20 days in a treatment 

with 100 F. rufa workers and a in control treatment without workers (in total 9 x 30 = 

270 individuals were tested with F. rufa and 8 x 30 = 240 were tested in the control 

treatment). 
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Worker size  

Maximum head width of the ant species used in the survival experiment was measured. 

This allows us to link the mean worker size of ant species with their efficiency in killing 

the myrmecophilous beetles. For each ant species, maximum head width from a 

random set of workers was measured. More workers were measured for a given 

species when it showed a high degree of polymorphism (N = 30 for S. fugax, T. 

caespitum, M. pharaonis and M. ruginodis, N = 50 for F. cunicularia and L. niger, N = 

100 for F. rufa and C. vagus.) 

Data analysis 

The proportion of aggressive interactions towards the four associates were modelled 

with a quasibinomial GLM (family = quasibinomial in function glm) to account for 

overdispersion and tested with a likelihood ratio test. Subsequently, a set of 

quasibinomial GLMs were conducted to compare post hoc the proportion of aggressive 

interactions between the four associates. P-values of these six pairwise tests were 

Bonferroni corrected. 

In the survival analyses, survival of the three obligate myrmecophilous beetles 

subjected to 10 different treatments was evaluated. In particular, the survival per beetle 

species in nests of F. rufa, in nests of eight other ant species and in a control set-up 

were tested against each other. Survival data per myrmecophile species were fitted 

with a mixed-effects Cox proportional-hazards model (Therneau 2015) by using the 

coxme function implemented in R version 3.2.1 (R Core Team 2014). This package 

allows the incorporation of random factors (Therneau 2015). In the Cox proportional-

hazards model, we test whether the hazard ratio of a treatment is significantly different 

from 1 (Cox 1972). The hazard ratio can be interpreted in our experiment as the 

mortality rate in a particular treatment relative to the mortality rate of a reference 

treatment. Treatment (i.e ant species and control) was used as a fixed factor, replicate 

was modelled as a random factor. In a series of pairwise tests, survival of 

myrmecophiles in treatments with different ant species and the control set-up against 

survival in nests of F. rufa (reference level) was compared. P-values were estimated 

with a likelihood ratio test (Anova function in car package) and Bonferroni corrected. 

Second, survival of myrmecophiles in nests of different ant species, including F. rufa, 

against the control set-up without ants (reference level) was tested. P-values were 

again estimated with a likelihood ratio test and Bonferroni corrected.  
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For the facultative associate P. scaber, survival data of the experiment without nest 

material (control vs. treatment with 100 F. rufa workers), were similarly fitted with a 

mixed-effects Cox proportional-hazards model and significance tested with a likelihood 

ratio test. As we did not count P. scaber individuals at regular time intervals in the extra 

experiment with nest material, we could not do a survival analysis here. In this 

experiment, we only compared the proportion of surviving isopods (out of 30) after 20 

days in a control set-up versus a treatment with 100 F. rufa workers with a 

quasibinomial GLM. Significance was tested with a likelihood ratio test. 

All tests were two-tailed and a significance level of α = 0.05 was used.  

 

RESULTS 

Aggression of F. rufa towards beetles and P. scaber  

Ants exhibited frequent aggressive behaviour, such as biting, opening mandibles and 

acid spraying (proportions can be found in Table 7.1, supplementary videos “Amidobia 

talpa”, “Lyprocorrhe anceps” and “Thiasophila angulata”). The proportion of aggressive 

interactions of F. rufa towards the four myrmecophiles was significantly different 

(quasibinomial GLM, LR Chisq= 262.37, df = 4, P < 0.001). Bonferroni corrected 

pairwise tests can be found in Appendix 7-2 Table A-7.3. Thiasophila angulata elicited 

most aggression (proportion aggressive interactions = 0.45, CI: 0.40-0.51), followed by 

L. anceps (proportion aggressive interactions = 0.25, CI: 0.19-0.31) and A. talpa 

(proportion aggressive interactions = 0.12, CI: 0.08-0.17). When interacting with ants, 

beetles accelerated, turned and avoided contact. They also regularly bent their 

abdomen (proportion interactions in which beetles bent their abdomen: T. angulata = 

0.13, CI: 0.09-0.18, L. anceps = 0.15, CI: 0.10-0.22 A. talpa = 0.03, CI: 0.01-0.06) 

(Table 7.1). When beetles where clamped between the ant mandibles, they always 

succeeded to escape. In spite of its large size, P. scaber was largely ignored 

(proportion aggressive interactions = 0.07, CI: 0.03-0.13) and was not bitten or sprayed 

with formic acid during the 20 interactions of the aggression experiment (Table 7.1).  

Survival of beetles and P. scaber in nests with F. rufa versus control 

Formica rufa workers did not reduce survival in the long term for the three obligately 

myrmecophilous beetles compared with the control set-up (Bonferroni corrected 

pairwise test, T. angulata: P = 1.000, L. anceps: P = 0.286, A. talpa P = 1.000, Fig. 7.2 

a,b,c, Appendix 7-2: Table A-7.2). Conversely, F. rufa workers induced a significant 
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mortality of the facultative associate P. scaber compared with the control set-up 

(Likelihood ratio test, Chisq= 7.87, P = 0.005, Fig. 7.2 d). In an additional 20-day 

experiment with nest material, the proportion of surviving isopods per replicate was 

also significantly reduced (quasibinomial GLM, Likelihood ratio test, Chisq = 39.307, P 

< 0.001) in presence of F. rufa workers (mean = 0.85, CI: 0.78-0.90) compared with a 

control set-up without workers (mean = 0.51, CI: 0.43-0.59). 

Table 7.1. Interactions between ant and associates are categorized in different categories. Mean proportions of a particular 
category out of a total of 20 interactions are given. 95% confidence intervals were calculated by running quasibinomial models for 
every interaction and with the function confint in R. They are listed in brackets under the means. Aggressive interactions are 
opening mandibles, biting and acid spraying. Species with a different letter code elicit a significant different proportion of 
aggressive interactions (Bonferroni corrected pairwise tests) The category “Abdomen bending” refers to the proportions of the 20 
interactions that were directly preceded or followed by abdomen bending. 

 

Survival of beetles in nests with other ant species  

There was a large variation in survival of the three beetles when associated with other 

ant species (Fig. 7.2 a,b,c, Appendix 7-2: Table A-7.2). In general, the survival ratio of 

the three beetle species was very similar in nests of the different ant species. Survival 

of the beetles was highest when associated with F. rufa workers compared with other 

ant species (Bonferroni corrected pairwise tests listed in Appendix 7-2: Table A-7.2). 

Monomorium pharaonis, S. fugax and C. vagus killed all rove beetles (T. angulata, L. 

anceps, A. talpa) within the first six days, most of which did not survive the first hours. 

Tetramorium caespitum and L. niger also significantly reduced survival of all rove 

beetles compared with survival in F. rufa nests (Bonferroni corrected pairwise tests 

listed in Appendix 7-2: Table A-7.2). Myrmica ruginodis, L. fuliginosus and F. 

cunicularia caused reduced survival in one or two beetles species compared with F. 

rufa. While there are records for the three beetle species with L. fuliginosus (chapter 

1: Parmentier et al. 2014), survival of L. anceps and T. angulata was significantly lower 

when associated with this ant species compared with their preferred F. rufa host. 

 
N Ignoring 

Showing 
interest 

Opening 
mandibles 

Biting 
Acid 
 spraying 

Proportion 
aggressive 
interactions 

 
Abdomen 
bending 

        
 

 

T. angulata 35 
0.40 
[0.34-0.46] 

0.15 
[0.11-0.18] 

0.32 
[0.27-0.37] 

0.12 
[0.08-0.16] 

0.01 
[0.01-0.02] 

0.45 
[0.40-0.51] 

a 0.13 
[0.09-0.18] 

        
 

 

L. anceps 21 
0.65 
[0.58-0.72] 

0.10 
[0.07-0.15] 

0.19 
[0.14-0.24] 

0.06 
[0.03-0.10] 

0.00 
 

0.25 
[0.19-0.31] 

b 0.15 
[0.10-0.22] 

        
  

A.talpa 22 
0.79 
[0.72-0.84] 

0.09 
[0.06-0.13] 

0.09 
[0.06-0.13] 

0.03 
[0.01-0.06] 

0.00 
 

0.12 
[0.08-0.17] 

c 0.03 
[0.01-0.06] 

        
  

P. scaber 10 
0.84 
[0.75-0.91] 

0.10 
[0.05-0.16] 

0.07 
[0.03-0.12] 

0.00 
 

0.00 
 

0.07 
[0.03-0.13] 

c - 
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Figuur 7.2.  Twenty day survival curves of (a) Thiasophila angulata, (b) Lyprocorrhe anceps, (c) Amidobia talpa and (d) Porcellio 
scaber in a treatment with the normal host Formica rufa and a control treatment without ants. Survival curves with other ant 
species are also given in a, b, and c. Significances of Bonferroni corrected pairwise tests (cf. Appendix 7-2 Table A-7.2) of a 
treatment compared with a treatment with F. rufa (reference) are represented by asterisks: * P < 0.05, **P < 0.01,*** P < 0.001, 
significances of Bonferroni corrected pairwise tests of a treatment compared with the control treatment are represented by hollow 
circles: ° P < 0.05, °° P < 0.01,°°° P < 0.001. 

 

Relationship of worker size and myrmecophile surviv al  

In Fig. 7.3 the ln(relative mortality rate) with a particular ant species for the three beetle 

species vs. the maximum head width size of the ant species was plotted. The ln(relative 

mortality rate rate) of the three beetle species initially decreased linearly with larger ant 

species and reaches its minimum with the large F. rufa species (Fig. 7.3). However, 

the extreme efficiency of the largest species C. vagus to kill the beetles, deviates from 

the larger worker-higher survival pattern observed in the other eight ant species. 
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Figuur 7.3. Relationship between ant species size (maximum head width) and the ln (relative mortality rate) of (a) Thiasophila 
angulata, (b) Lyprocorrhe anceps, (c) Amidobia talpa. Dots show the mean of the maximum head width and grey bars the range 
of max head widths. Here, the reference level of the relative mortality rate is the treatment with F. rufa. Therefore the ln (relative 
mortality rate) in nests of F. rufa is 0 (ln (mortality rate F. rufa / mortality rate F. rufa = ln (1). = 0)).  

 

DISCUSSION 

RWAs acted aggressively towards three associated rove beetles. These obligate 

myrmecophiles reacted agitated, often bent their abdomen and fled away. 

Nevertheless, these short-term antagonistic interactions did not harm the 

myrmecophiles over a period of 20 days. Interestingly, survival of the common soil-

dwelling isopod P. scaber, which can be highly abundant in RWA mounds, did 

decrease due to RWA association. Ants mostly ignored these isopods and were not 
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observed to bite or chase them. However, isopods are reported to have a reduced life 

time or a lowered reproductive investment when exposed to both abiotic and biotic 

stress (Hornung and Warburg 1994, Kight and Nevo 2004, Castillo and Kight 2005). 

The numerous interactions with ants in the experiments might indeed represent an 

elevated biotic stress level which ultimately led to lower survival ratios. RWA mounds 

can still be sources rather than sinks for P. scaber as well as for other facultative 

myrmecophiles, when the benefits of a thermoregulated, moist environment with ample 

of food sources (Rosengren et al. 1987, Kronauer and Pierce 2011) outweigh the 

stress costs associated with the ants. The three beetles have no specialized 

morphological (Donisthorpe 1927, Freude et al. 1974), chemical (chapter 6) or 

behavioural adaptations (Donisthorpe 1927, supplementary videos “Amidobia talpa”, 

“Lyprocorrhe anceps” and “Thiasophila angulata”) compared with more advanced 

myrmecophiles. We observed in all three species in varying degree, the bending of the 

abdomen, which stopped ants from attacking. Emitting chemicals from glands in their 

bent abdomen is a general defence strategy of non-ant associated and ant-associated 

rove beetles (Huth and Dettner 1990). However, it cannot be excluded that the beetles 

have evolved gland contents specifically adapted to deter wood ants. Possibly, the 

beetles have, akin to other parasitic social insect associates (Fisher and Sampson 

1992, Kilner and Langmore 2011), a thicker cuticle to better resist ant bites and stings. 

Another possibility is that the rove beetles are difficult to catch by their small size and 

agility for the relatively large wood ants. The negative effects caused by ant aggression 

could also be compensated by indirect positive hygienic effects of the ants on the 

beetles. Ants possess glands which contain fungicidal and antimicrobial chemicals and 

these are important in suppressing pathogens in the moist and warm nests (Poulsen 

et al. 2002, Yek and Mueller 2011).  

In this study, we show that the general traits (fleeing, hiding, abdomen bending) of 

these beetles are insufficient for association with most non-host ant species. The 

impact of different ant species on the myrmecophiles differed dramatically and some 

ant species even immediately killed the beetles. It is rather surprising that RWAs, which 

are commonly assumed as extremely dominant and aggressive towards other ants and 

arthropods (Mabelis 1978, 1984, Skinner and Whittaker 1981, Batchelor and Briffa 

2010), are unsuccessful in killing or harming these beetles. Moreover it is remarkable 

that the unspecialized beetles of this study only have a narrow preferred host range, 

i.e. mound building Formica ants. The relatively large size of RWAs (Seifert 2007) 

might hamper them to successively detect, attack and/or handle small myrmecophiles 

and might be more suited to attack larger species, including conspecific competitors. 
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Small animals are harder to detect and are more agile (Blanckenhorn 2000) and size 

constraints can be important in explaining interactions between species. For example, 

large aerial insectivorous bats either cannot detect small insects, or they detect them 

too late to allow manoeuvring for capture (Barclay and Brigham 1991). Therefore their 

diet is constrained to large and less agile insects, whereas small bats effectively detect 

and hunt small insects (Barclay and Brigham 1991). Small workers in a polymorphic 

ant colony could have more antennal glomeruli to process olfactory cues as shown in 

some carpenter ants (Mysore et al. 2009, 2010). Small workers could also be 

ergonomically more efficient in catching, stinging and biting myrmecophiles that match 

their size. Moreover we reported recently that within a RWA colony, smaller workers 

were more aggressive than large workers towards myrmecophiles (chapter 3: 

Parmentier et al. 2015b). Therefore, we hypothesized that the same size-based 

aggression response could operate at the species level, whereby species with small 

workers detect and/or attack these myrmecophiles more easily and efficiently. 

Interestingly, survival of all three beetles indeed gradually increased with larger ant 

species and reached its maximum in the relatively large RWAs (Fig. 7.3). However, a 

linear association was violated with the extreme low survival in nests of C. vagus, the 

largest ant species known for the study region. Other factors than worker size could 

affect the efficiency of ants to kill myrmecophiles. For example, polymorphic ant 

species could have size classes which are more efficient in deterring (chapter 3: 

Parmentier et al. 2015b) and killing myrmecophiles. In addition, the defence 

mechanism (acid spraying vs stinging), the composition of defence chemicals and 

behaviour of ant taxa (Hölldobler and Wilson 1990) could affect the mortality rate of 

myrmecophiles. The observed effect on myrmecophile survival of different ant species 

in our tests are in line with the known diversity of rove beetle myrmecophiles associated 

with those ant species/taxa in Northern Europe (Päivinen et al. 2002). RWAs have 

most associated myrmecophilous rove beetles (N = 26) followed by L. fuliginosus (N = 

21). The subgenus Serviformica (includes F. cunicularia) (N = 10), Lasius (except L. 

fuliginosus) (N = 16), and Myrmica species have a moderate number (N = 6). Finally, 

Tetramorium (N = 2), Camponotus (N = 1), Solenopsis (N = 0) and Monomorium (N = 

0) have a very small or no records of associated rove beetles in Northern Europe 

(numbers based on Table 1 in Päivinen et al. 2002). There are also no records of 

myrmecophilous rove beetles associated with Solenopsis and Monomorium in the 

European myrmecophile list of Wasmann (1894) and in the British list of Donisthorpe 

(1927). It is postulated that colony size of ants (and corresponding number of niches 

in nests) is an important factor in predicting myrmecophile diversity (Kronauer and 
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Pierce 2011). In addition to this rule, we suggest that some ant species are more 

successful in expelling or killing myrmecophiles, which could constrain myrmecophile 

distribution and host range patterns.  

 

SUPPLEMENTARY VIDEOS 
The videos “Amidobia talpa”, “Lyprocorrhe anceps” and “Thiasophila angulata” may be 

consulted at the following link: https://www.youtube.com/channel/UCbdIeMJM-

oO6AHqCgnH_bcQ 
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APPENDIX CHAPTER 7 

Appendix 7-1. Effect of longer myrmecophile settlin g time (one hour) on 
ant aggression.  
Some myrmecophiles need longer settling times than the 10 s used in our experiments 

before normal interactions between ants and myrmecophiles can be observed (pers. 

communication C. von Beeren). In this experiment, we tried to assess whether longer 

settling times of myrmecophiles could affect the aggression response of the ants in our 

study system. Thiasophila angulata beetles were collected in a F. rufa colony (West-

Vleteren) in October 2015 and were kept with workers and nest material in a plastic 1 

L container until the aggression tests on 30/11/2015. These tests were similar to those 

described in the material and method section “Ant aggression towards tested species“. 

The only difference was that the first 20 interactions were now scored after one hour 

instead of 10 s after the introduction of the myrmecophile. We replicated these 

aggression tests seven times with different beetle specimens.  

The proportion of aggressive interactions in both treatments were modelled with a 

quasibinomial GLM and differences were tested with a likelihood ratio test. Confidence 

intervals of all interactions are overlapping in both treatments (Table A-7.1). We did 

not find significant differences in the proportion of aggressive interactions between the 

two treatments (quasibinomial GLM, Chisq LR 2.5729, P = 0.2762). This suggests that 

the settling time of 10 s used in our experiment is sufficient to reflect the interactions 

between host ants and the unspecialized myrmecophiles studied here. 

Table A-7.1 . Interactions between F. rufa and T. angulata for a settling time of 1 h and 10 s (data from Table 7.1). Mean proportions 
of a particular category out of a total of 20 interactions are given. 95% confidence intervals were calculated by running 
quasibinomial models with the function confint in R. They are listed in brackets under the means. Aggressive interactions are 
opening mandibles, biting and acid spraying. The category “Abdomen bending” gives the proportion of interactions in which the 
beetle bent its abdomen. 

Settling time N Ignoring Showing 
interest 

Opening 
mandibles Biting Acid spraying 

Proportion 
aggressive 
interactions 

Abdomen 
bending 

         

1 h 7 0.39 
[0.27-0.53] 

0.07 
[0.03-0.15] 

0.48 
[0.34-0.62] 

0.06 
[0.02-0.14] 

0.00 
 

0.54 
[0.39-0.67] 

0.26 
[0.13-0.42] 

         

10 s 35 0.40 
[0.34-0.46] 

0.15 
[0.12-0.19] 

0.32 
[0.26-0.38] 

0.12 
[0.08-0.16] 

0.01 
[0.01-0.02] 

0.45 
[0.39-0.51] 

0.13 
[0.08-0.19] 
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Appendix 7-2. Statistical tests chapter 7. 
Table A-7.2 . A series of quasibinomial GLMs compare survival of three beetles introduced in colony fragments of different ant 
species and in a control set-up without ants, with survival of the beetles introduced in a F. rufa colony fragment (P-values indicated 
as Prufa). P-values are Bonferroni corrected. Bonferroni corrected P-values of a series of quasibinomial GLMs, which compared 
survival of three beetles in colony fragments of different ant species with a control set-up without ants, are also reported (P-values 
indicated as Pcontrol). Number of replicates and total number of myrmecophile individuals per treatment are given. In each replicate 
survival of 9-13 individuals of the three myrmecophile species were tested. 

   T. angulata  L. anceps  A. talpa 

Ant species Nreplicates  Nindividuals Prufa Pcontrol  Nindividuals Prufa Pcontrol  Nindividuals Prufa Pcontrol 

F. rufa 10  109 reference 1.000  109 reference 0.286  112 reference 1.000 
control 10  111 1.000 reference  105 0.286 reference  110 1.000 reference 
F. cunicularia 9  91 1.000 0.731  87 0.025 0.333  100 0.368 1.000 
M. ruginodis 10  97 1.000 1.000  109 0.002 0.065  116 1.000 1.000 
L. fuliginosus 10  109 <0.001 <0.001  93 <0.001 0.020  101 0.417 1.000 
L. niger 10  97 <0.001 <0.001  108 <0.001 <0.001  110 <0.001 0.016 
T. caespitum 9  107 <0.001 <0.001  108 <0.001 <0.001  113 <0.001 <0.001 
C. vagus 10  100 <0.001 <0.001  100 <0.001 <0.001  100 <0.001 <0.001 
M. pharaonis 8  81 <0.001 <0.001  98 <0.001 <0.001  83 <0.001 <0.001 
S. fugax 10  100 <0.001 <0.001  100 <0.001 <0.001  100 <0.001 <0.001 
              
Total individuals   1002    1017    1045   
              

 
 

Table A-7.3. Bonferroni corrected P-values of Post hoc pairwise tests in which we compared the proportion of aggressive ant 
interactions between the four associates. 

 T. angulata L. anceps A.talpa 

T. angulata    
L. anceps < 0.001   
A.talpa < 0.001 0.003  
P. scaber < 0.001 0.001 0.6168 
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ABSTRACT 

 

Nearly all social insects have a highly developed nestmate and species recognition 

system that is quite effective at keeping out any intruders. Rare cases of “parabiosis”, 

however, are known in some ants where two species apparently live peacefully 

alongside each other within the same nest. We here report on such an association 

between the tiny Afrotropical ant Strumigenys maynei and the large ant Platythyrea 

conradti. We demonstrate that both ants peacefully share the same arboreal nests in 

spite of the presence of clearly distinct nestmate recognition cues. Because of the large 

size differences, we hypothesized that each of the two species would benefit from 

specializing in carrying out particular tasks, in analogy to the size-related division of 

labor observed in species with size-polymorphic workers. In line with this theory, we 

find that the tiny ant S. maynei was highly efficient at nest defense against intranidal 

arthropods and alien ant intruders, whereas the large ant P. conradti was highly skilled 

in nest-engineering. We show that the described association formally qualifies as a 

mutualism, as P. conradti clearly benefited from the supreme defense capabilities of 

S. maynei, and that, conversely, S. maynei took advantage of small prey thriving in the 

organic nest material collected by P. conradti. Overall, our study suggest that ants can 

associate with a morphologically distinct ant partner as an alternative to developing 

distinct worker castes.  
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INTRODUCTION 

Most social insects live inside well-defended “fortresses” from which any intruders are 

effectively excluded (Wilson 1971, Hölldobler & Wilson 1990,). Such nest defense is 

aided by a highly developed nestmate and species recognition system that relies on 

the presence of colony- or species-specific chemical cues (van Zweden & D’Ettorre 

2010). Ants, like most other social insects, are typically very aggressive towards non-

nestmates and alien intruders, yet rare examples of “parabiosis” are also known in 

which two distinct ant species peacefully share the same nest (Hölldobler and Wilson 

1990, Menzel and Blüthgen 2010). These ants tolerate the presence of another ant 

species in the same nest, even if both ant species typically raise their brood in different 

nest chambers. Surprisingly, such species do not show any aggression towards each 

other, often exploit the same food sources and may even use the same pheromone 

trails (Menzel and Blüthgen 2010). The most widely accepted theory is that parabiotic 

associations are of a mutualistic nature and are beneficial for both ant partners. For 

example, in a parabiotic association between two South-East Asian ants, one of the 

species, Crematogaster modiglianii, was shown to benefit from the presence of the 

stronger and more aggressive Camponotus rufifemur, whilst the latter took advantage 

of the pheromone trails and nest construction capabilities of Cr. modiglianii (Menzel 

and Blüthgen 2010). A similar mutualistic association was also demonstrated in South-

American parabiotic ants (Davidson 1988, Vantaux et al. 2007). Nevertheless, Menzel 

et al. (2014) also reported that some parabiotic partners seemed to be exploited, 

without receiving any return benefits from the partner.  

Parabiosis can involve tight associations where both partners show colony-specific 

tolerance levels. In this case, only the partner colony is tolerated and conspecific and 

heterospecifc workers of other compound nests are aggressed by both partner 

colonies (Orivel and Dejean 1997, Emery and Tsutsui 2013). Other associations are 

less strict, as a partner might also tolerate other colonies of the partner (Menzel et al. 

2008b). In contrast with most social insect parasites that mimic the odor of their host 

to get accepted, parabiotic ants succeed to associate even when they each have 

distinct chemical cuticular profiles (Orivel and Dejean 1997, Menzel et al. 2008a, 2009). 

It is suggested that parabiotic ants are able to recognize the chemical profile of the 

partner using a learning process which leads to colony or species-specific tolerance 

(Orivel and Dejean 1997). Nevertheless, there are also indications that a parabiotic life 

style imposes selection pressures on the chemical profile, as parabiotic ants frequently 

possess exceptionally long-chain hydrocarbons and higher amounts of 
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methylbranched alkenes and alkadienes (Menzel and Schmitt 2012), or may carry 

cuticular compounds that are thought to appease the other partner (Menzel et al. 

2013).  

In the present study, we explored an apparent parabiotic association between the large 

Ponerinae ant Plathythyrea conradti and the tiny Myrmicinae ant Strumigenys maynei 

that was recently discovered in Ivory Coast (Yéo et al. 2006). The aim of our study was 

three-fold. First, we investigated the nature and specificity of the association by 

measuring the level of aggression between the two partners and analyzing whether 

they could discriminate conspecific and heterospecific workers of alien compound 

nests. Second, we carried out a chemical analysis of the cuticular hydrocarbon profiles 

of P. conradti and S. maynei of different compound nests to determine the chemical 

congruency between the associated ants across different nests. We then linked these 

chemical data with the behavioral assays and discuss these results with respect to the 

specificity of the ant association. Finally, we studied the potential benefits for both 

partners to engage in the association. In species with size-polymorphic workers, it is 

well documented that workers of particular size cohorts specialize on carrying out 

specific tasks inside the colony, such as nest defense (Hölldobler and Wilson 1990, 

Tian and Zhou 2014, Parmentier et al. 2015b). Analogously, we hypothesized that a 

similar specialization in nest defense between the two ant partners that vary greatly in 

size and morphology could bring distinct benefits to the association. Defense 

capabilities were tested for both ant partners towards intranidal intruders 

(myrmecophiles) and towards extranidal enemies (alien ant species).  

 

MATERIAL AND METHODS 

Study site and study organisms 

Platythyrea conradti and Strumigenys maynei were found in a gallery forest along the 

Bandama river in the Lamto Ecological Station (6°13’ N, 5°01’ W), Ivory Coast in 

January 2016 (dry season) (Fig. 8.1A). The distribution of S. maynei (Myrmecinae) is 

restricted to the forest zones of West and central Africa, and Uganda (Bolton 2000). 

This tiny (ca. 2.5 mm long) ant is often found nesting in rotten wood in the leaf litter 

layer, but also in holes in trees (Bolton 2000). Most species of Strumigenys are 

specialized predators that capture small arthropods (Hölldobler and Wilson 1990, 

Bolton 1999). Colonies of S. maynei are headed by multiple queens (polygyne) and 

produce large numbers of workers. Platythyrea conradti (Ponerinae) is a large (ca. 15 

mm long) Afrotropical arboreal ant that produces relatively small colonies (max. 500 
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workers). The workers hunt solitarily and prey on a wide variety of arthropods that they 

kill by a powerful sting (Dejean 2011). Both P. conradti and S. maynei are found in 

absence of each other across their overlapping distribution in the Afrotropical region 

(pers. observations KY, Bolton 2000). However, Yéo et al. (2006) reported that S. 

maynei colonies were present in 9 of 12 inspected P. conradti colonies in Lamto. These 

compound nests were typically found in hollow branches of living trees (usually 

Pancovia bijuga, Sapindaceae) 0.5-2 m above ground and of which the opening was 

stuffed with organic material (cf Fig. 8.1E). A number of associated arthropods or 

myrmecophiles were also detected in the compound nests (pers. observations KY, 

WD).  

In this study, hollow branches of ten living trees, which were characteristically filled 

with organic material, were opened using a machete. Organic material was collected 

by hand, whereas ants and myrmecophiles were aspirated. The organic material was 

carefully sieved in the lab to find additional ants and myrmecophiles. Ants and 

myrmecophiles were housed per nest in plastic 1 L containers with a bottom layer of 

moist plaster and organic material of the original nest. Cotton plug soaked in sugar 

water was regularly provided. 

The nature and specificity of the ass ociation. 

In a series of aggression experiments, the behavior of S. maynei and P. conradti 

towards workers of the partner colony found in the same compound tree nest and 

towards workers of S. maynei and P. conradti found in other nests was tested. In all 

tests, the proportion of aggressive interactions (opening mandibles, biting and stinging) 

observed during a total of twenty interactions were scored as the dependent variable. 

We defined an interaction as the crossing of ant antennae with the introduced individual 

or one of its body parts. Indeed, the tiny S. maynei workers did not interact with the 

whole body of the much larger P. conradti workers, but mainly just with their body parts 

(legs, antennae) that contact the ground. Test arenas had a plaster bottom and fluon 

coated walls to prevent animals from escaping. Because of the large size differences 

between S. maynei and P. conradti (Fig. 8.1A,D), different test arenas and number of 

workers were used depending on the interaction tested. Number of trials for each 

interaction is listed in Table 8.1. 

Aggression of P. conradti towards P. conradti workers of the same colony and alien 

colonies were done by introducing a P. conradti worker in an arena with one P. conradti 

worker. Both workers originated from either nest N1, N4 or N7, but tests were done 

blind to the origin of the introduced worker. Both workers were replaced in every trial. 
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Aggression of P. conradti towards co-inhabiting and alien workers of S. maynei was 

tested by introducing one S. maynei worker in an arena (diameter 8 cm) with 10 

workers of P. conradti. Workers originated from nest N1 and N4, but tests were done 

again blind with respect to the origin of the S. maynei worker.  

Aggression of S. maynei towards co-inhabiting and alien P. conradti workers was 

analyzed in an arena with a diameter of 3 cm. Here, the behavior of three individuals 

of S. maynei towards one P. conradti worker was followed. These tests were done with 

two colonies of Strumigenys maynei (nest N1 and nest N7) and workers were replaced 

in every trial. Platythyrea conradti workers also originated from nest N1 and nest N7, 

but tests were performed blind with respect to the origin of the P. conradti workers. 

Interactions were scored after the P. conradti worker calmed down and did no longer 

walk around, whereas in all other tests described below aggression scoring was 

recorded starting 10 s after introduction of an individual in the arena. Aggression of S. 

maynei towards workers of alien S. maynei colonies was tested by introducing a S. 

maynei individual in an arena (diameter 8 cm) with 40 S. maynei workers from either 

nest N1, N4 or N7. The introduced S. maynei individuals belonged to one of these 

colonies, but tests were performed blind with respect to the origin of these workers. 

Aggression tests with S. maynei as host were observed under a Leica MZ6 stereo-

microscope.  

The effect of nest origin, i.e. same nest or alien nest, of an introduced S. maynei worker 

on the proportion of aggressive interactions elicited in an arena with 40 S. maynei 

workers were analyzed using a generalized linear mixed model (GLMM) with a 

binomial error distribution using R package lme4. Significance was tested using a 

likelihood ratio test using R package car. The origin of the introduced worker was 

included as a fixed factor, whereas the 9 possible combinations of host colony and 

introducer colony (nest of host colony- nest of introducer colony: N1-N1, N1-N4, N1-

N7, N4-N1, N4-N4, N4-N7, N7-N1, N7-N4, N7-N7) were included as a random 

intercept. In addition, an observation-level random intercept was incorporated to 

account for possible overdispersion (Browne et al. 2005). A similar model and analysis 

was run to assess the effect of nest origin of an introduced P. conradti worker on the 

proportion of aggressive interactions elicited in an arena with three S. maynei workers. 

As the two ant species originated from only two nests, the random factor that 

implemented the combination of acceptor and introducer colony had only 4 levels (nest 

of host colony- nest of introducer colony: N1-N1, N1-N7, N7-N1, N7-N7). Aggression 

of P. conradti towards other P. conradti workers and towards S. maynei, either from 
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the same or an alien nest, was not modelled as no variation was observed within a 

treatment.  

Cuticular hydrocarbon profiles of the ant partners.  

Cuticular compounds of freeze-killed S. maynei workers (5 samples from nest N8, 3 

samples from nest N10) were extracted in 30 µL of hexane (HPLC, Sigma-Aldrich) in 

2 ml vials with PTFE septum (Sigma-Aldrich) for 10 minutes. Because of their small 

size, 5 S. maynei workers were pooled per sample. The large P. conradti workers (5 

samples from nest N8, N9 and 10) were extracted in 200 µL of hexane for 10 minutes. 

Colonies of S. maynei and P. conradti were analyzed from compound nest N8 and 

N10, the samples of the S. maynei colony from N9 were contaminated and only the P. 

conradti colony of that nest was therefore analyzed.Samples were evaporated at room 

temperature to dryness and stored at -18 °C. Prior to analysis, S. maynei samples were 

diluted again in 30 µL and P. conradti samples in 200 µL, and 2 µL of these solutions 

were injected in a Thermo GC/MS (Trace 1300 ISQ) equipped with a Restek RXi-5sil 

MS column (20 m x 0.18 mm x 0.18 µm). The method had an initial temperature profile 

consisting of 1 minute at 40 °C, two temperature ramps from 40 °C to 200 °C at 20 °C 

min-1 and from 200 °C to 340 °C at 8 °C min-1, after which the final temperature of 

340 °C was held for 4 minutes. We used helium as a carrier gas at a flow rate of 0.9 

mL min-1, splitless injection and an inlet temperature of 290 °C. All samples and a 

linear C7 to C40 linear alkane ladder standard (49452-U, Supelco) at a concentration 

of 0.001 µg/mL and 0.01 µg/mL were run in the same batch. Retention indices were 

calculated using cubic spline interpolation based on the elution times of the external 

alkane ladder standard. These calculations were done using an in-house developed R 

script (available from the authors on request). 

Per species, we only included peaks comprising at least 0.1 percent of the total profile 

area in each of the samples. Peaks were identified on the basis of their retention index 

and mass spectra. The analysis of the level of similarity among cuticular profiles was 

based on the hydrocarbon peaks that were shared by both ants, as it is generally 

assumed that this group of components is pivotal in nestmate recognition in ants (van 

Zweden and D’Ettorre 2010). The areas of the hydrocarbon peaks were first 

transformed by the Aitchison transformation (Aitchison 1986) and samples were then 

grouped by a hierarchical cluster analysis (Euclidean distances, Ward’s method) using 

the R function hclust. 
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Potential benefits of the association. 

Aggression tests of P. conradti and S. maynei towards myrmecophiles and alien ants 

were conducted similarly as described in the aggression trials above. Myrmecophiles 

were introduced in an arena (diameter 8 cm) with 10 workers of P. conradti found in 

the same nest (nest N2, N4, N6, N7 and N9), workers of alien ant species were 

introduced in an arena (diameter 8 cm) with 10 P. conradti workers of nest N10. 

Aggression of S. maynei towards myrmecophiles and alien ant workers was tested in 

the same way, but observations were done under a Leica MZ6 stereo-microscope. 

Myrmecophiles here were introduced in test arenas with 40 S. maynei workers 

collected in the same nest (nest N7, N9 and N10), alien ants were introduced in an 

arena with 40 S. maynei workers of Nest 10. Different myrmecophile and alien ant 

individuals were used per trial. The confidence intervals corresponding with the mean 

proportion of aggressive interactions of (1) S. maynei towards alien ants, (2) S. maynei 

towards myrmecophiles, (3) P. conradti towards alien ants and (4) P. conradti towards 

myrmecophiles were assessed by running four different quasibinomial general linear 

models.  

 

RESULTS 

The nature and specificity of the association 

Colonies of Platythyrea conradti and Strumigenys maynei were always found together 

in the 10 inspected branches. Brood of both species was present in most of the 

inspected nests, but was clearly separated. The ten colonies of S. maynei were all 

polygynous and contained multiple breeding queens and winged male and female 

sexuals were also recorded (Fig. 8.1D). In one P. conradti colony, male sexuals were 

observed. Platythyrea conradti did not show any aggression towards workers of S. 

maynei living in the same compound nest or coming from an alien nest (Table 8.1, 

Suppl. video S1). In contrast, alien P. conradti workers were directly and fiercely 

attacked by biting and stinging (Fig. 8.1C). The workers involved in the fight could not 

be separated and fought until death. Therefore the proportion aggressive interactions  

in Table 8.1 was set to 1. Like P. conradti, Strumigenys maynei was very aggressive 

towards conspecific workers of an alien nest (GLMM, Likelihood ratio test, df = 1, Chisq 

= 32.56, P < 0.001) (Fig. 8.1B). They showed limited aggression towards P. conradti 

living in the same nest and aggression was not elevated when P. conradti originated 

from an alien nest (GLMM, Likelihood ratio test, df = 1, Chisq = 1.33, P = 0.248) (Table 

8.1, Suppl. video S1). Strumigenys maynei was never observed soliciting for food and 
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grooming behavior between heterospecific workers was also absent. No interspecific 

brood predation was observed between the ant partners in lab nests.  

 

 

Figure 8.1. Overview of the compound nest microcosm of P. conradti and S. maynei and some interactions. A. Inhabitants of the 
compound nest: (1) P. conradti, (2) S. maynei, (3) Pselaphinae sp. (4) Holotrochus sp. (5) adults and nymphs of Neoasterolepisma 
delamarei. B. Aggression between workers of S. maynei originating from different nests. C. Aggression between workers of P. 
conradti originating from different nests. D. P. conradti and S. maynei queen, workers and alate queen. E. Typical compound nest 
with opening at a height between 1 and 2 m filled with organic material. The dashed line indicates the shape and depth of the nest 
in the hollow branch. Photo courtesy T. Parmentier. 

Cuticular hydrocarbon profiles of the ant partners 

A total of 78 different peaks were distinguished across both ant species. The majority 

of the peaks consisted of hydrocarbons (N = 59) (Table 8.2). There were also non-

hydrocarbon compounds which we did not identify (N = 19). The profile of Platythyrea 

conradti and S. maynei was distinct with a much higher proportion of light hydrocarbons 
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(between n-C21 and n-C27) (Table 8.2, Fig. 8.3). Nevertheless, both species shared 

30 hydrocarbon peaks (Table 8.2, Fig. 8.3). Platythyrea conradti and S. maynei formed 

two distinct clusters in the hierarchical cluster analysis and the workers grouped per 

nest within both clusters (Fig. 8.4).  
Table 8.1. Mean proportion of aggressive interactions of S. maynei and P. conradti towards inhabitants of the same or alien nests. 
Number of trials (N), 95% confidence intervals in brackets. 

 

Potential benefits of the association 

Myrmecophiles and alien ants elicited no or only limited aggression in P. conradti. 

Surprisingly, P. conradti avoided alien ants and regul tried to escape even when the 

introduced workers were much smaller (Suppl. video 2, 3). This can be demonstrated 

by the total number of escapes out of total number of interactions in trials with: 

Monomorium bicolor N = 8/200, Crematogaster sp. 1 N = 8/200, Crematogaster sp. 2 

N = 20/200 and O. longinoda N = 8/200. P. conradti seldomly initiated a fight with an 

alien ant and showed in general merely aggression when it was bitten or stung by the 

introduced alien ant worker. Alien ants and myrmecophiles evoked a strong aggression 

response in S. maynei, in clear contrast to what we observed in P. conradti. 

Strumigenys maynei workers typically grabbed the legs of the intruder and tried to sting 

(Suppl. video 4, 5, 6, 7 and 8). An overview of the tested interactions between the 

inhabitants of the compound nests is schematically illustrated in Fig. 8.2. 

Introduced species 
 

N 
Platythyrea 
conradti 

 N 
Strumigenys 
maynei 

Ants         
Strumigenys maynei same nest  20 0.00  18 0.02 [0.01-0.05] 
Strumigenys maynei alien nest  20 0.00  36 0.42 [0.26-0.59] 
       
Platythyrea conradti same nest  20 0.00  30 0.07 [0.05-0.10] 
Platythyrea conradti alien nest  15 1.00  30 0.05 [0.03-0.08] 
       
Alien ants        
Monomorium pharaonis  10 0.00 [0.00-NA]  5 0.91 [0.82-0.97] 
Monomorium bicolor  10 0.03 [0.01-0.06]  5 0.91 [0.82-0.97] 
Crematogaster sp. 1  10 0.01 [0.00-0.03]  4 0.90 [0.79-0.96] 
Crematogaster sp. 2  10 0.02 [0.00-0.04]  5 0.98 [0.92-1.00] 
Oecophylla longinoda  10 0.08 [0.04-0.13]  5 0.90 [0.81-0.96] 
       
Myrmecophiles        
COLEOPTERA       
Pselaphinae sp. subtribe Batrisina 9 0.01 [0.00-0.05]  7 0.58 [0.49-0.66] 

Scydmaeninae sp. "Napoconnus complex" of 
genera 

5 0.00 [0.00-NA]  5 0.42 [0.32-0.52] 

Holotrochus sp. Staphylinidae: Osoriinae 8 0.00 [0.00-NA]  5 0.56 [0.46-0.66] 

COLLEMBOLA 

 
     

Cyphoderus subsimilis Cyphoderidae 5 0.00 [0.00-NA]  5 0.45 [0.35-0.55] 

THYSANURA 

 
     

Neoasterolepisma delamarei  Lepismatidae 9 0.25 [0.15-0.37]  4 0.83 [0.73-0.90] 
Mesonychographis myrmecophila Nicoletiidae: Atelurinae 3 0.00 [0.00-NA]  - - 
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We observed Strumigenys maynei with small prey (three times with Collembola: 

Cyphoderus subsimilis, two times with Pseudoscorpiones) living in the organic material 

holding between its mandibles in lab nests.  

 

 

Figure 8.2. Schematic overview of aggressive interactions in P. conradti - S. maynei compound nests based on Table 8.1. The 
solid circle symbolizes the focal nest, the dashed circle an alien nest. Arrows refer to an interaction between P. conradti or S. 
maynei towards species at the end of the arrow. White arrows indicate none or minimal aggression, whereas black arrows 
designate overt aggression. 

 

 

Figure 8.3. Representative gas chromatograms of the two co-inhabiting ant species with the relative intensity of peaks in function 
of retention time. The identity of the peaks corresponding with the peak numbers is given in Table 8.2. 
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Figure 8.4. Hierarchical cluster analysis of the shared cuticular hydrocarbons of Platythyrea conradti and Strumigenys maynei 
(Euclidean distance, Ward’s method). Colonies of S. maynei and P. conradti were analyzed from compound nest N8 and N10, 
the samples of the S. maynei colony from N9 were contaminated and only the P. conradti colony of that nest was therefore 
analyzed. 

 
 
Table 8.2. Comparison of cuticular components (mean percentages ± SD) of S. maynei (Npooled = 9) and P. conradti (N = 15). HC 
= hydrocarbon, non-HC = non-hydrocarbon component. 

Peak 
no. 

retention 
index 

 S. maynei P. conradti  Peak 
no. 

 
retention index  S. maynei P. conradti 

1 2026.78 non-HC 0.33 ± 0.13 -  40  2686.00 non-HC 0.27 ± 0.54 - 
2 2053.23 non-HC 0.50 ± 0.54 -  41  2686.73 4,16-diMeC26 - 1.41 ± 0.71 
3 2100.02 n-C21 0.22 ± 0.06 0.32 ± 0.25  42  2699.59 n-C27 7.37 ± 2.63 4.56 ± 1.98 
4 2130.00 non-HC 0.28 ± 0.33 -  43  2732.58 13,11,9-MeC27 3.00 ± 1.96 8.45 ± 2.48 
5 2149.00 non-HC 8.56 ± 13.68 -  44  2750.09 5-MeC27 0.21 ± 0.11 0.52 ± 0.15 
6 2172.96 3-MeC21 - 0.67 ± 0.71  45  2760.52 non-HC 6.51 ± 14.07 0.41 ± 0.44 
7 2199.84 n-C22 0.22 ± 0.11 0.18 ± 0.12  46  2773.96 3-MeC27 8.74 ± 2.90 4.98 ± 1.57 
8 2276.74 C23:1 - 0.25 ± 0.27  47  2781.75 5,y-diMeC27 0.66 ± 0.19 0.77 ± 0.22 
9 2299.58 n-C23 0.34 ± 0.17 2.94 ± 1.16  48  2799.17 n-C28 1.15 ± 0.36 0.13 ± 0.09 
10 2303.00 non-HC 0.48 ± 0.34 -  49  2806.40 3,y-diMeC27 2.23 ± 1.42 1.90 ± 0.54 
11 2335.71 11,9-MeC23 - 1.68 ± 0.50  50  2831.48 12-MeC28 - 0.38 ± 0.08 
12 2341.78 7-MeC23 - 0.31 ± 0.22  51  2832.00 non-HC 0.68 ± 0.21 - 
13 2350.62 5-MeC23 - 0.45 ± 0.17  52  2839.97 non-HC 0.58 ± 0.42 0.45 ± 0.25 

14 2373.01 3-MeC23 - 2.33 ± 1.58  53  2850.61 non-HC 10.88 ± 
10.60 0.82 ± 0.39 

15 2377.00 non-HC 0.14 ± 0.09 -  54  2862.00 4-MeC28 1.58 ± 0.46 - 
16 2398.00 non-HC 0.56 ± 0.36 -  55  2869.00 non-HC 1.13 ± 0.62 - 
17 2399.56 n-C24 - 0.56 ± 0.27  56  2869.84 x-C29:1 - 0.64 ± 0.31 
18 2408.97 3,13-diMeC23 - 0.71 ± 1.24  57  2879.34 y-C29:1 0.74 ± 0.47 1.65 ± 0.81 
19 2415.00 non-HC 0.14 ± 0.06 -  58  2888.87 non-HC - 0.15 ± 0.06 
20 2434.72 x-MeC24 0.17 ± 0.03 1.11 ± 0.30  59  2899.04 n-C29 4.73 ± 1.80 0.27 ± 0.14 
21 2445.26 6-MeC24 - 0.25 ± 0.13  60  2930.37 15,13,11,9-MeC29 2.19 ± 0.72 0.93 ± 0.28 
22 2458.02 4-MeC24 - 0.21 ± 0.17  61  2940.00 7-MeC29 0.25 ± 0.20 - 
23 2477.21 x-C25:1 - 1.88 ± 0.77  62  2950.00 5-MeC29 0.40 ± 0.22 - 
24 2484.73 y-C25:1 - 0.46 ± 0.21  63  2962.05 x,y-diMeC29 1.31 ± 0.55 0.13 ± 0.05 
25 2486.00 non-HC 0.98 ± 0.67 -  64  2973.11 3-MeC29 4.28 ± 1.14 0.19 ± 0.05 
26 2492.54 4,14-diMeC24 - 0.21 ± 0.13  65  2980.09 5,y-diMeC29 - 0.10 ± 0.03 
27 2499.80 n-C25 1.13 ± 0.55 5.36 ± 2.64  66  3000.00 n-C30 0.17 ± 0.07 - 

28 2534.29 13,11,9-
MeC25 0.68 ± 0.88 10.74 ± 1.52  67  3030.00 x-MeC30 0.67 ± 0.43 - 

29 2541.89 7-MeC25 0.30 ± 0.45 2.01 ± 1.32  68  3052.34 non-HC - 0.14 ± 0.09 
30 2550.63 5-MeC25 - 1.04 ± 0.44  69  3056.00 non-HC 1.07 ± 0.45 - 
31 2573.83 3-MeC25 1.58 ± 0.82 7.58 ± 2.10  70  3069.92 C31:1 0.18 ± 0.09 0.31 ± 0.21 
32 2582.63 5,y-diMeC25 0.27 ± 0.23 1.56 ± 0.64  71  3080.70 C31:1 0.15 ± 0.09 0.23 ± 0.19 
33 2599.71 n-C26 0.45 ± 0.25 1.19 ± 0.49  72  3100.00 n-C31 0.94 ± 0.77 - 
34 2607.99 3,y-diMeC25 0.72 ± 0.46 3.42 ± 1.91  73  3129.40 15,13,11,9-MeC31 2.27 ± 1.54 0.62 ± 0.29 
35 2633.19 x-MeC26 0.23 ± 0.22 2.64 ± 0.40  74  3178.38 non-HC 10.77 ± 5.32 1.94 ± 1.49 
36 2644.41 6-MeC26 - 0.25 ± 0.09  75  3228.00 non-HC 1.11 ± 0.70 - 
37 2657.98 4-MeC26 - 0.44 ± 0.21  76  3300.00 n-C33 0.21 ± 0.09 - 
38 2662.00 unknown HC 0.64 ± 0.42 -  77  3328.47 x-MeC33 1.34 ± 0.81 0.22 ± 0.10 
39 2678.57 C27:1 2.14 ± 5.07 16.81 ± 4.49  78  3527.26 x-MeC35 1.17 ± 0.44 0.13 ± 0.08 

 
 

DISCUSSION 

In this study, we identified a unique association between two Afrotropical ants. 

Colonies of the tiny ant Strumigenys maynei and the large ant Platythyrea conradti 

lived together in all inspected tree nests in the study area. There was little or no 

aggression between the two partners, but there were also no signs of intimate 

heterospecific interactions such as trophallaxis or grooming which are observed 

between ants and specialized myrmecophiles or social parasites (Hölldobler and 
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Wilson 1990, Buschinger 2009). Because of the strict association and the lack of 

aggression between the two partners, this association can be considered as a 

parabiosis.  

Our results confirmed that parabiotic partners might associate with distinct nestmate 

recognition cues (Orivel and Dejean 1997, Menzel et al. 2008a, 2009, Emery and 

Tsutsui 2013) (Fig. 8.3, 8.4). Previous studies showed that parabiotic partners hardly 

shared any cuticular compounds (summarized in Table 1 in Emery and Tsutsui 2013). 

Platythyrea conradti and S. maynei, in contrast, had 51 percent of hydrocarbons in 

common. It is unclear, however, whether the parabiotic lifestyle of the ants of this study 

exerts selection on the presence and proportional composition of nestmate recognition 

cues to facilitate the recognition and/or acceptance in the association. The ants clearly 

perceive conspecific workers with a slightly different chemical profile in both species 

as they showed strong aggression against conspecific workers. Tolerance of the 

parabiotic species can be limited to a single heterospecific partner colony. In this case, 

there is no aggression between parabiotic partners of the same nest, but both species 

are aggressive towards allocolonial (= from another compound nest) workers of their 

partner species (Orivel and Dejean 1997, Emery and Tsutsui 2013). It is suggested 

that the partners learn to recognize the distinct chemical odor of their partner colony 

(Orivel and Dejean 1997). Other associations are less specific and are characterized 

by complete or a gradient of tolerance towards allocolonial workers from the partner 

species (Menzel et al. 2008b). The association between S. maynei and P. conradti is 

also not specific, as there is no elevated aggression towards allocolonial workers of 

the partner. Both species apparently accept all colonies from the partner species. This 

can be explained by the recognition of species-specific rather than colony-specific 

chemical cues or the detection of appeasing cues (Menzel et al. 2013). However, the 

tolerance of the parabiotic partner might also be caused by a merely mechanistic 

process. Possibly S. maynei is too small to be detected efficiently by P. conradti. 

However, it was reported that P. conradti detects S. maynei when it feeds on its prey 

and carries them away (Yéo et al. 2006). On the other hand, P. conradti workers might 

be too large to be attacked by S. maynei workers. It should be noted here that they 

successfully attacked Paltothyreus tarsatus, an ant which equals the size of P. conradti 

(pers. observations TP).  

The ant partners of the compound nests of this study are peculiar because of the 

extreme size differences. Therefore we hypothesized that these distinct morphs in the 

compound nest could be an alternative strategy for worker polymorphism in a single 
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colony of an ant species. Worker polymorphism is assumed to benefit colony fitness 

as some worker castes are more efficient in the performance of certain tasks (Oster 

and Wilson 1978). Rather than diversifying the morphology of their own worker caste, 

ants might form a mutualistic association with a morphologically distinct ant species 

which is more efficient in certain tasks. In particular, we demonstrated that S. maynei 

is much more efficient in nest defending. Typical threats for ant nests are competitor 

ants, that may rob and destroy the colony and associated myrmecophiles that can prey 

on the brood and steal prey (Hölldobler and Wilson 1990, Parmentier et al. 2016a). 

Remarkably, the large P. conradti workers ignored all myrmecophiles, except for N. 

delamarei. Platythyrea conradti also ignored competitor ants or even tried to escape. 

Fights were never initiated by this ant and aggressive behavior was only observed after 

it was attacked. In a previous study, it was described that these ants crouched with 

their mandibles open and folded their antennae backwards when they were confronted 

with competitor ants at a feeding site (Dejean 2011). It was hypothesized that P. 

conradti opened its mandibles to release repellent volatiles secreted by the mandibular 

glands (Dejean 2011). This peculiar crouching behavior was also observed in our 

behavioral trials, but rarely in combination with mandible opening. In clear contrast, S. 

maynei, displayed overt aggression towards myrmecophiles and towards alien ants. 

They typically clung to the legs of the enemies and folded their abdomen to sting. It 

can be expected that the rather passive P. conradti colonies highly benefit from the 

presence of a large legion of very aggressive S. maynei workers. This large worker 

force of tiny ants is particularly efficient to repel small intruders and competitors, which 

are largely overlooked by the large P. conradti workers. By analogy, small workers in 

polymorphic red wood ants were demonstrated to be supreme defenders against 

small, intranidal myrmecophilous parasites (Parmentier et al. 2015b). The large 

Platythyrea conradti workers might be more suited to repel large arthropods or 

vertebrates in parallel with the defense specialization of large workers in polymorphic 

ant colonies against large enemies (Lamon and Topoff 1981, Hölldobler and Wilson 

1990, Batchelor et al. 2012). There is a vast amount of literature that stresses the 

specialization of morphologically distinct worker castes in nest defense, but here we 

argue that morphologically distinct ant species, can be analogously specialized in 

different tasks. 

Strumigenys maynei colonies, in their turn, might also benefit from the parabiotic 

association. Platythyrea conradti workers fill the nest entrances with a plug of fine and 

coarse organic material (Fig. 8.1E) and create as such a microcosm for small 

arthropods. This can be demonstrated by the enormous abundance of mainly 
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Collembola (Cyphoderus subsimilis) that were regularly detected inside the nests 

(Suppl. Video 9). The genus Strumigenys is a group of small predators that capture 

living prey with their odd-shaped mandibles (Bolton 1999). In this study and in Yéo et 

al. (2006) it was demonstrated that S. maynei captured intranidal prey. It appears that 

S. maynei indirectly profits of the nest engineering skills of P. conradti to feed on prey 

living inside the compound nest. Previously, it was observed that P. conradti hunted 

actively several arthropods in the tree canopy in the rainy season, whereas S. maynei 

workers never foraged further than 10 cm away from the nest entrances (Yéo et al. 

2006). This further suggests that S. maynei finds its food inside the nest.  

Given the apparent benefits for both partners in this parabiotic association and the 

absence of potential costs, i.e. no food competition and brood predation, this 

parabiosis is expected to be mutualistic in nature. This is in line with previous studies 

on parabioses in the Neotropical and Oriental associations between Camponotus and 

Crematogaster species which gave evidence that the association was favorable for 

both parabiotic partners. Crematogaster takes advantage of Camponotus’ ability to 

construct ant-garden nests and its supreme nest defending abilities (Davidson 1988, 

Vantaux et al. 2007, Menzel and Blüthgen 2010). Camponotus benefits from 

Crematogaster through following its pheromone trails to food sites (Vantaux et al. 2007, 

Menzel and Blüthgen 2010). However, parabioses between Camponotus and 

Crematogaster can also shift to commensalism and parasitism, when there is 

aggressive competition, exploitation and no apparent benefits for one partner (Menzel 

et al. 2014).  

The parabiotic system of this study is an excellent model system to test interactions 

between symbiotic arthropods. Further behavioral, ecological and chemical studies 

that compare the strategies of S. maynei and P. conradti living in association compared 

to free-living colonies of both species could greatly contribute to our knowledge on the 

factors that promote the association and cooperation of two distinct species.  
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SUPPLEMENTARY VIDEOS 

The supporting videos may be consulted at the following link: 

https://www.youtube.com/channel/UCbdIeMJM-oO6AHqCgnH_bcQ 

• Video S1. P. conradti vs. S. maynei 
• Video S2. P. conradti vs. Crematogaster sp. 1 
• Video S3. P. conradti vs. Tetramorium sp. 
• Video S4. S. maynei vs. Crematogaster sp. 2 
• Video S5. S. maynei vs. Monomorium pharaonis 
• Video S6. S. maynei vs. Tetramorium sp. 
• Video S7. S. maynei vs. Neoasterolepisma delamarei 
• Video S8. S. maynei and P. conradti vs. Pselaphinae sp. 
• Video S9. Inside view of the branch nest after removal of organic material. 

Hundreds of Cyphoderus subsimilis and workers of P. conradti and S. maynei 
can be observed.
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This thesis explored the functioning of myrmecophile communities and their interaction 

with the host and environment. In this general discussion, I will first focus on what this 

thesis adds to the field of symbiont interactions in social insects. Detailed discussion 

of my findings can be found in the separate chapters. Here, I will highlight four general 

discoveries and patterns found throughout this thesis. Further, the advantages and 

limitations of the red wood ant (RWA) model system will be evaluated. Finally, I will 

look ahead to future research avenues in the field of social insect symbionts.  

 

MAIN FINDINGS 

The role of the environment in myrmecophile distrib ution and diversity  

A major part of this thesis deals with biotic interactions occurring in ant microcosms. In 

chapter 2 , we also examined whether abiotic factors affect the distribution and 

diversity of myrmecophiles associated with RWAs. We studied the ecology of social 

insect associates from a metapopulation/metacommunity perspective (Hanski and 

Gilpin 1991), where each RWA mound was considered as a distinct patch with a local 

myrmecophile community. Local abiotic conditions such as pH and moisture did not 

affect the total number of species in the mound (chapter 2 ) and the presence/absence 

of a particular myrmecophile species (unpub. results). Abiotic variables, nevertheless, 

were averages of the complete mound and the presence of species was determined 

from pooled samples taken from different locations in the mound. This made it 

impossible to detect within nest niche preferences of myrmecophiles. I expect, 

however, that micro-climatic conditions do play a role in the distribution of species 

within the mound. For example the largest number of myrmecophiles inside a mound 

was typically found near or in the central stem or under bark which provide relative 

stable localities in terms of moisture and temperature. Chapter 5 showed that also 

biotic interactions could affect location preference within a mound, with some species 

avoiding the dense brood chambers and others that were attracted to these chambers. 

An interplay of biotic and abiotic conditions might jointly shape the spatial preference 

of myrmecophiles inside the nest. The spatial organization of the mounds in a forest 

had a strong effect on myrmecophile diversity. Isolated nests supported clearly a less 

diverse community. This is in line with the results of studies in large forest complexes 

in Finland (Päivinen et al. 2004, Härkönen and Sorvari 2014). Another interesting result 

of this study is that a relative diverse myrmecophile community can persist in very small 

and impoverished forest fragments. Consequently, the protection of small RWA sites, 

typical for many parts of Flanders (Loones et al. 2008), could be very valuable. 
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Complex dynamics in a social insect microcosm 

A brand-new paper published by Ivens et al. (2016) in Annual Review of Entomology 

invites researchers to study symbiont assemblies associated with social insects from 

a community ecology context using network analysis, rather than focusing on one-to-

one interactions between a single symbiont and a host. The authors argue that “this 

approach will provide new and complementary insights into the evolutionary and 

ecological dynamics between social insects and their associates, and will facilitate 

comparisons across different social insect-symbiont assemblages as well as across 

different types of ecological networks”. I can only agree with the authors based on the 

findings of the two systems that I investigated. The proposed approach of focusing on 

a whole community of myrmecophiles was already implemented in many parts of this 

thesis. As a result of this approach, it became clear that ant nests might be dynamic 

micro-ecosystems with a multitude of direct and indirect interactions between host-

symbiont and symbiont-symbiont. In chapter  1, the diversity of RWA myrmecophiles 

was listed for the first time. This overview gives a very static image of the symbiont 

community as it merely lists 125 species, of which I found about one third during this 

thesis. However, it is a worthwhile baseline that reminds us that the interactions tested 

in this thesis were conducted with only a fraction of the total diversity known to be 

associated with RWAs. The presented interactions in this thesis are thus only the “top 

of the iceberg” of a complex interaction web occurring in RWA mounds. Note, however, 

that most social insect nests support many fewer symbionts. 

An essential element to understand ecosystems is the characterization of the trophic 

relationships between its members. Therefore an extensive food web analysis was 

performed on the RWA myrmecophile community in chapter  4. It became clear in this 

analysis that many prey-predator interactions occur among the symbionts. In addition, 

it was demonstrated that most myrmecophiles were both brood parasites and 

kleptoparasites. In contrast, we showed in chapter 8 that the myrmecophile community 

can also be a prey for the ant host. Here, the host Strumigenys maynei captures small 

symbionts that thrive in the ideal conditions of the parabiotic nest. Another important 

aspect in community dynamics is the characterization of agonistic behaviour between 

the members. There was no aggression (excluding predation) between myrmecophile 

species in both model systems (chapter 5 , chapter 8 ). However, the aggression 

response of RWA workers towards myrmecophiles was highly variable (chapter 5 ). 

Some myrmecophile species were completely ignored, others provoked a moderate 

aggression response, yet others were fiercely attacked and chased. Moreover the 

symbionts occupied different niches inside the nest, with some penetrating in the 
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central dense brood chambers, and others preferring chambers at the edge of the 

nests. Next, we analysed whether level of aggression of the RWA host, integration 

level (brood chamber vs. non-brood chamber) and brood predation tendency were 

correlated. No association was found between these parameters, which reflects that 

harmful parasites do not provoke a larger aggression response and can penetrate into 

the deepest parts of a social insect fortress. Interestingly, the presence of hostile RWA 

workers, did not affect survival of obligate RWA myrmecophiles, whereas a facultative 

myrmecophile’s survival was decreased (chapter 7 ). In the parabiotic system of 

chapter 8 , we found peculiar dynamics between the hosts and symbionts. Platythyrea 

conradti hardly attacked the symbionts, whereas S. maynei exhibited strong 

aggression towards all myrmecophiles. 

The role of cuticular hydrocarbon recognition cues in social insect-
symbiont interactions 
Social insects developed an advanced nestmate recognition system based on a 

colony-specific composition of non-volatile cuticular compounds (van Zweden and 

d’Ettorre 2010). It is widely demonstrated that symbionts can break the “chemical 

code”. They either deceive the host by the active production of the host’s chemical 

profile (chemical mimicry sensu strictu), by the passive transfer of the host’s chemical 

profile (chemical camouflage) and/or by carrying very low concentrations of chemical 

compounds (chemical insignificance) (Nash and Boomsma 2008, van Zweden and 

d’Ettorre 2010). These strategies were found in almost all tested social insect inquilines 

(symbionts living in the nest) (see Table A-6.1 in Appendix chapter 6 ). Consequently, 

it was surprising that the majority of the RWA myrmecophiles studied in this PhD thesis 

carried completely different chemical profiles (chapter 6 ). Some of them probably rely 

on chemical insignificance, as they had very low concentrations of cuticular 

compounds and were mostly ignored. Nevertheless, another group had normal 

concentrations of cuticular compounds and provoked a moderate to strong aggression 

response. So it appeared that these species did not invest in chemical deception, but 

rather rely on efficient escape behaviour and defence mechanisms with volatiles. 

Similarly, it was recorded that extranidal myrmecophilous beetles did not mimic their 

host (Stoeffler et al. 2011). Chemical mimicking of the host’s chemical profile is likely 

to be a very specialized strategy. We argue that a historical focus on specialized 

symbionts, caused a distorted view on the chemical strategies applied by symbionts. 

Results of the RWA microcosm showed that unspecialized myrmecophiles can 

infiltrate in social insect nests without chemical deception, but with more primitive 

defence techniques such as swift movements, defence chemicals, death feigning and 
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a hard, protective exoskeleton. One can argue that the non-mimicking strategy is 

typical of the RWA community, because of the typical nest structure of RWA mounds. 

As the thatch of a RWA mound generates an enormous amount of hiding places, the 

selection pressure on symbionts to mimic the host could be much lower than in nests 

of other social insect / ant species. However, it should be noted that the survival of 

three RWA myrmecophiles was not affected by RWA workers in lab nests without 

thatch (chapter 7 ). Moreover many RWA myrmecophiles can also associate with ants 

with simple earth nests which have less hiding places (chapter 1 ). More studies are 

needed to give an accurate view of the distribution of the different chemical integration 

systems. Based on the prevalence of related, unspecialized social insect symbionts 

who likely outnumber specialized symbionts (Donisthorpe 1927, Kistner 1982, 

Hölldolber and Wilson 1990, chapter 1: Parmentier et al. 2014), the absence of mimicry 

might be very common in social insect symbionts.  

The effect of body size in social insect host-symbi ont interactions 

A recurrent theme in this thesis was the strong aggression response of small ant 

workers towards myrmecophiles. In chapter  3, we described that small RWA workers 

were more aggressive and more efficient in deterring associated myrmecophiles. In 

chapter  7, we found that the survival of three beetles associated with RWAs was 

relatively high in nests of species with large ant workers, and decreased when 

associated with smaller ant species. Survival in nests of the smallest ant species was 

in general less than a few hours, because they were directly attacked, bitten and/or 

stung and did not manage to escape. Finally, in chapter  8, we demonstrated that the 

tiny ant S. maynei attacked fiercely alien ants and myrmecophiles, whereas the large 

parabiotic partner P. conradti ignored myrmecophiles and alien ants and even avoided 

some alien ants. Body size is a key trait of organisms which is under strong 

evolutionary pressure (Blanckenhorn 2000). It is generally believed that selection for a 

higher fecundity and sexual selection will promote a larger body size in organisms over 

evolutionary time (Blanckenhorn 2000). However, these selective pressures are 

counterbalanced by a selection pressure that entails the costs of becoming too large. 

A major hurdle of becoming too large is a higher probability of detection by enemies 

and a lower agility and manoeuvrability to escape (Blanckenhorn 2000). This will lead 

to disproportionate killing or predation of larger individuals (Macchiusi and Baker 1991, 

Fincke et al. 1997, Blanckenhorn 2000). Similarly, it can be expected that small social 

insect symbionts benefit from their size to remain undetected or to escape successfully 

from aggression in the nest (Kistner 1982). Symbionts are in general smaller than their 
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social insect host (Kistner 1979). Symbionts exceeding the size of their host are rare 

and are restricted to very specialized species, such as the myrmecophile Paussus (cf. 

Introduction Fig. I. 3.B) associated with Pheidole, that deceive the host chemically 

and/or acoustically (Geiselhardt et al. 2007, Barbero et al. 2009b). Non-integrated 

symbionts might rely on several mechanisms such as defensive glands, armoured 

protective structures, slow movement or death feigning, but also small size might thus 

be a major advantage, especially in species lacking the aforementioned defence 

mechanisms (Donisthorpe 1927, Hölldobler and Wilson 1990). There are some 

anecdotal indications that the presence of social insects exerts a selection pressure 

on the size of symbionts. Karl Hölldobler discovered two morphs of the ant cricket 

Myrmecophilus acervorum of different sizes (Hölldobler 1947). The larger "major" 

morph was found primarily in nests of ant species with larger workers, such as Formica, 

Camponotus and Myrmica, whereas the smaller "minor" morph was associated with 

species that have smaller workers, such as Tetramorium and Lasius. Analogously, we 

discovered that individuals of the ant isopod P. hoffmannseggii were much larger (max. 

head width female: 5.7 mm) when associated with F. rufa than individuals (max. head 

width female: 4.3 mm) found with the smaller ant L. flavus (unpub. results), but 

differences in abiotic conditions could also affect the observed size differences. There 

are also symbionts such as the myrmecophilous cockroaches Attaphila and crickets 

Myrmecophilus that are far below the average size of relatives which suggests an 

adaptive role of small size for symbionts in social insect nests (Wheeler 1900). The 

social insect host, in turn, will benefit from smaller workers (that match the size of the 

symbionts) to detect and aggress the small symbionts more efficiently. The presence 

of symbionts that try to stay unnoticed or sneak away could therefore exert selection 

on ants to become smaller or to develop/maintain small worker castes as was 

suggested in chapter  2. Alternatively, large ants could associate with small ants that 

are more efficient in deterring small symbionts or intruders as demonstrated in chapter  

8. Symbionts are also prone to size constraints (Blanckenhorn 2000) which might 

hamper the evolution of a further decrease in size when trying to associate with small 

ant species. In chapter  7 we clearly demonstrated that when the myrmecophilous 

beetles equalled the size of the workers of the ant species, they were rapidly killed. 

The symbionts could here not rely on swift escape behaviour effective in larger ant 

species. It is clear that size asymmetries between social insect hosts and symbionts 

(but also between social insects and competitors) is an unexplored domain and a meta-

analysis on the size differences between host-symbiosis could be fruitful to gain insight 

in this process. 
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EVALUATION OF THE RWA MICROCOSM AS A MODEL 
SYSTEM  
At the start of this thesis, my rather vague plan was to study myrmecophiles associated 

with temperate ants. My fascination for these organisms has been fuelled after reading 

the influential work “The Ants” of Hölldobler and Wilson during my master thesis. 

Unfortunately, little was known on the distribution of myrmecophiles in Belgium. 

Therefore I decided to start preliminary work on the very abundant 

“pan”myrmecophiles Cyphoderus albinus and Platyarthrus hoffmannseggii which can 

be found in every garden. In addition I focused on the conspicuous extranidal 

myrmecophiles C. magnifica and C. quadripunctata associated with RWAs, which I 

had observed during my master thesis on task division in RWAs and of which some 

populations were known. During one of the first collection trips, I detected a small rove 

beetle, which later proved to be Stenus aterrimus, walking unharmed among hundreds 

of ants on the surface of a RWA nest. This odd observation captured my attention and 

made my curious whether I could also find this beetle inside the nest. So I grabbed 

some nest material by hand and inspected for myrmecophiles. I was aware that some 

beetles could live in RWA mounds, but was convinced that they would not occur in the 

impoverished and highly fragmented study sites in Western Flanders. So I was really 

amazed when I found five different rove beetle species and a spider in that small 

sample. By inspecting more mounds I found quickly more and more associated 

species. Interestingly, the same myrmecophiles were also found in other fragmented 

RWA populations. The relatively large diversity of myrmecophiles found in RWAs 

provides a unique opportunity to compare different strategies and to test interactions 

between myrmecophiles living in the same nest. Moreover most species were found in 

large densities. Occasionally, more than 50 individuals of the same species could be 

present in a sample of 1 L. Thus, the main advantage of this study system is clearly 

the relative ease to collect large numbers of individuals of different myrmecophile 

species, which was an essential prerequisite for most experiments. Mounds are long-

living, stable and very resilient to minor disturbances. Our method, where we sampled 

a minor fraction of the nest and put all the material gently back, did not severely harm 

the nests. They recovered quickly and therefore myrmecophiles could be “harvested” 

multiple times in the same nests during this thesis. Another advantage is that the 

conspicuous nests of RWAs are easy to find in the field in contrast to those of most 

other ant species. This allowed to map the distribution of all nests in a site, which was 

essential to conduct the metapopulation study of chapter 2.  
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However, it turned out that the RWA microcosm could be a challenging model system 

for several reasons. Firstly, sampling myrmecophiles in RWA mounds can be very 

painful. Wood ants are extremely aggressive and readily bite and spray formic acid 

when disturbed. Not only the mound surface, but also its direct perimeter, is crowded 

with thousands of ants leaving or returning to the nest. This makes it impossible to 

approach the nest without having aggressive ants crawling on and in your shoes and 

clothes. Additionally, the most efficient way to collect the largest number of 

myrmecophiles was simply grabbing nest material with bare hands. Other methods 

that I tried such as sampling with a shovel, with gloves and with pitfalls placed inside 

the nest were far less successful. With bare hands, it was much easier to reach the 

nest material near and in the cracks of the tree stump or a fallen branch around most 

mounds were constructed. Here the largest number of myrmecophiles could be found. 

So this thesis involved thousands of bites and regularly swollen arms, but after several 

years, however, you get used to this annoying part of sampling RWA mounds. A more 

essential limitation of the RWA microcosm system is the fact that red woods ants are 

very hard to keep in the lab for a long period of time. The life span of workers is strongly 

shortened, brood is poorly raised and queens lay few eggs in lab settings. This impairs 

the study of long term fitness costs or benefits of myrmecophiles on RWAs. The colony 

fragments (1000-2000 workers) that I collected also do not show typical RWA 

behaviour in the lab, such as nest construction or the formation of foraging trails. An 

initial idea to compare the capability of the myrmecophile community to follow trails of 

their RWA host could therefore not be tested. More natural behaviour could be 

mimicked by collecting large nest fragments or even whole colonies (cf (Gösswald 

1989b). However, this strategy conflicts with a more ethical constraint of RWA 

microcosms. Because of factors such as habitat fragmentation, shading and closure of 

the tree canopy and agriculture, there has been a dramatic decline of RWAs all over 

Europe and consequently they gain legal protection in many countries (Gösswald 

1989b, Dekoninck et al. 2010). A thoughtful and non-destructive sampling of RWAs 

should therefore be preferred. An ideal model system should support symbionts with 

different degrees of specialization. However, only two main categories could be 

distinguished in the species we found in the RWA microcosm: (1) facultative 

myrmecophiles and (2) obligate myrmecophiles that are all relatively unspecialized as 

they do not (except for D. maerkelii that engages in trophallaxis) integrate in colony 

life. Only Lomechusa and Lomechusoides beetles and to a lesser degree Hetaerius 

ferrugineus are specialized (“symphile”) species that can be found with RWAs (chapter 

1: Parmentier et al. 2014). It would be ideal to compare the strategies (behaviour, 
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chemical ecology, distribution, host specificity …) of these species with the group of 

less specialized myrmecophiles that were explored in this thesis. However, In spite of 

numerous samplings at different locations, these species were never found with RWAs 

(Lomechusa emarginata was found with Formica fusca). Probably they are very rare 

or have got a rather localized distribution. A last limitation of this study system is the 

difficulty to let the myrmecophiles reproduce in lab conditions. In contrast with ants, 

most myrmecophiles could be kept alive for months when placing them on moist plaster 

and providing dead maggots or springtails. However, few species produced a limited 

amount of larvae, of which only a handful reached the adult stage because of low 

fecundity in the lab and/or high cannibalism. The initial plan to compare myrmecophile 

fitness (measured by the number of offspring) in absence and presence of host ants 

was therefore not feasible. Consequently, chapter 7  which evaluates the effect of an 

aggressive host on myrmecophiles was based on the survival of myrmecophiles rather 

than on myrmecophile fitness. 

 

FUTURE PERSPECTIVES 

During the course of my PhD thesis, many questions arose. Only a part could be 

addressed, because of the limitations of the model systems or time constraints. Here 

are some aspects on the topic of ant-symbiont interactions that I think are valuable to 

examine in the future: 

Exploring in depth the role of myrmecophiles 

The different types of symbiosis with ants were explained in the introduction and 

corresponding Fig. I.1. There it was stressed that mutualisms, commensalisms and 

parasitisms should be viewed as extremes of a spectra of possible interactions 

between symbionts and ants. Therefore, it is necessary to study all possible roles of 

myrmecophiles to have an accurate view of their impact on their host and to position 

them correctly along the gradient of mutualism to commensalism and to parasitism. 

We demonstrated that most species of the tested RWA community were brood 

predators or cleptoparasites. Some species, such as the springtail C. albinus appeared 

to have no or only a limited effect on their host. No direct positive effects of the 

myrmecophiles could be unravelled. Hence, the species of RWA myrmecophile 

community can be situated along the commensalism-parasitism gradient (cf Fig. I.1), 

but the exact position (“role”) along this continuum is elusive. We tried to rank the 

severity of the parasites by comparing the proportion of specimens that prey on brood. 
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But it is clear that the severity of parasitism is expected to be much more complex and 

depends on factors such as the presence of other food sources, the efficiency of the 

RWA worker to deter the parasites, intra- and interspecific competition, temporal 

dynamics … The exact costs of the different myrmecophiles on their host and their 

relative ranking along the parasitism-commensalism gradient, can only be addressed 

by comparing the fitness costs of controlled RWA nests with and without 

myrmecophiles. However, as noted above, long-term (e.g. 6-12 months) monitoring of 

infected and non-infected RWA colonies or colony parts is not possible because of 

high mortality, limited fecundity and poor food acceptance of RWAs in the lab. This 

type of long-term fitness experiments could be conducted with less challenging ants 

such as Lasius ants, Serviformica ants or F. sanguinea. Unfortunately, these ants 

harbour a poorer diversity of myrmecophiles and it is harder to get a sufficient number 

of associated myrmecophile individuals. Long-term fitness studies can also highlight 

unexpected long-term effects of parasitism. Hovestadt et al. (2012) predicted by 

modelling that the presence of the myrmecophilous brood parasite Microdon in 

colonies of Formica lemani could have an unexpected benefit for the host as it would 

promote the production of gynes. The developmental switch of a larva to a worker or 

gyne is largely affected by the amount of received food. As in parasitized colonies the 

small number of remaining ant larvae can get access to a larger amount of food, a 

larger number of larvae develop to gynes. Modelling and long-term fitness experiments 

could reciprocally inform and constrain one another.  

This thesis almost entirely focused on conflicts between ants and symbionts, and 

positive effects of a symbiosis were only reported in the last chapter on parabiotic 

defence specialization. The role of an ant associate in a mutualistic association with 

ants is typically the offering of food, such as honeydew in aphids and some lycaenid 

caterpillars, gongylidia or hyphal swellings of myrmecophilous fungi or food bodies and 

nectar secretions in myrmecophytes. In return the symbiont is protected against 

enemies (Hölldobler and Wilson 1990, Fig. I.1 Introduction). In the RWA microcosm 

system, no apparent positive effects are present as the myrmecophiles do not offer 

food rewards to the host. However, we showed one indirect positive effect in chapter 

4: some brood parasitic parasites could help the host by preying on other brood 

parasites. Another type of positive effect of ant symbionts is the provision of hygienic 

cleaning services which was shown in mites associated with bees (Biani et al. 2009). 

Similarly, the mite Hypoaspis oophila which lives on the eggs of RWAs, can provide 

cleaning services. It is reported that this mite does not puncture the eggs but merely 

feeds on the secretions of the eggs. This was confirmed by detailed observation with 
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the binocular. So, at first sight, this species appears to be a commensal. But the 

following observation suggests that this species could also have mutualistic 

characteristics: I placed some brood, ants and nest material in a box at room 

temperature. After two weeks I opened the box and all ants were dead ant the nest 

material was completely overgrown with fungi, except for an egg pile with some little 

mites running on it. This strongly suggests that these mites help to clean the eggs and 

keep fungi away. But also other RWA myrmecophiles could assist in cleaning the nest. 

The best candidates for this role are the springtail C. albinus and the isopod P. 

hoffmannseggii, which both can be very abundant in RWA mounds and other ant nests 

(cf. Collembola in the parabiotic system: suppl. video I) and whose relatives feed on 

fungi (Hanlon and Anderson 1979, Berg and Wijnhoven 1997). We hypothesized that 

these myrmecophiles help to maintain fungus infestation under control. The study of 

this putative positive side-effect was launched by a thesis student, but unfortunately 

not finished. A detailed study of these potential cleaning interactions could give us a 

more accurate view of the (variable) role of myrmecophiles along the parasitism-

mutualism continuum. 

Gradient of specialization 

One of the most pertinent topics in evolutionary biology is the inference of the 

evolutionary trajectory of general traits to specialized traits (Futuyma and Moreno 

1988). In the case of social insect symbionts, little is known how specialized 

myrmecophily could have arisen from free-living arthropods. The focus of most studies 

is on specialized symbionts and unspecialized symbionts were hitherto surprisingly 

neglected in behavioural and chemo-ecological studies. I hope that this work can 

contribute to our knowledge of less specialized myrmecophiles. As indicated above, 

myrmecophiles in RWA microcosms span only a limited degree of specialization. 

Therefore, other, but related myrmecophiles (for example in the group of Aleocharinae 

rove beetles) associated with different ants and showing different degrees of 

specialization should be studied to fully cover the characteristics of the evolutionary 

trajectory of myrmecophily of a myrmecophilous group found in RWAs. One ant-

symbiont system where all gradients of specialization are present should be much 

more practical. Interestingly, the root aphid fauna associated with the yellow meadow 

ant Lasius flavus is such a system. These ants typically nest in open meadows and 

lawns (Seifert 2007). In special constructed aphid chambers, they provide shelter and 

protection to root aphids that feed on the grass roots. The ants do not forage above 

ground, but are completely dependent on the underground root aphids (Seifert 2007). 
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Some root aphid species are not associated with the ant, others only facultatively and 

some cannot survive without the ant. Within the group of specialized root aphids, some 

have lost the winged stage and/or get a privileged treatment such as transportation to 

feeding sites or nursing of their eggs (pers. observations TP, Pontin 1960). A detailed 

study of such a system where behavioural, morphological, chemical and distribution 

(e.g. generalist or host specific) data are combined could give us an unprecedented 

view on the evolutionary steps in myrmecophily.  

How can the presence of a parasitic myrmecophile be  evolutionary 
stable? 
During this thesis I often wondered how these RWA mounds could persist with the 

presence of thousands of associated brood parasites and cleptoparasites. 

Nonetheless, we found two mechanisms that might lower parasite pressure. First, we 

demonstrated the existence of intraspecific (among size cohorts and tasks in RWAs) 

or interspecific (in the parabiotic system) specialization in defence against brood 

parasitic myrmecophiles. This implies that a particular group of workers will deter 

parasites more efficiently than an average worker. Probably a more efficient 

mechanism is the intra-guild predation of brood predators as demonstrated in chapter 

4. Ants could also reduce parasite pressure by moving regularly to new locations as 

suggested by McGlynn (2012). Depending on the trail following capabilities of the 

myrmecophiles, it can be expected that relocated nests will contain significantly less 

parasites. Interestingly, RWAs often move to new locations or new mounds bud from 

the central mound (Gösswald 1989a, Ellis and Robinson 2014). Preliminary tests 

showed that the RWA myrmecophiles were unable to follow RWAs that were forced to 

move to a new nest in the lab. Additionally, it could be interesting to test whether 

parasite pressure is a driver for nest movement. In that case ants actively avoid the 

parasites by nest movement. This active avoidance mechanism is in contrast with 

parasite loss as a side-effect of nest moving initiated by other processes (e.g. 

worsening abiotic conditions, natural colony multiplication). However, the most 

effective way to get rid of parasites is independent colony founding by a dispersing 

RWA queen.  

It is clear that this is a very challenging topic, as the costs of myrmecophiles on their 

host are mediated by many parameters. Ideally this topic should be tackled with a 

combination of experimental data and theoretical modelling. 
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The nature and specificity of chemical defence mech anisms 

The secretion of volatile defensive chemicals is a widely applied strategy of social 

insect symbionts (especially in rove beetles), but this group of chemicals is poorly 

known. The focus of research was hitherto mainly on non-volatile cuticular 

hydrocarbons. A study on the volatiles of three myrmecophilous rove beetles by 

Stoeffler et al. (2011) showed that the composition of tergal gland secretion of the 

beetles appeared to be highly adaptive. One beetle mimicked the panic pheromone of 

its host, another beetle replaced an aggressive inducing component and the third 

beetle secreted an appeasement pheromone. Again, a study that compared the 

composition of volatile chemicals of myrmecophiles (along a gradient of myrmecophily) 

and this of related free living species could be very informative. Moreover, it should be 

tested whether the gland secretions of the myrmecophile cause an effect in all ants or 

only in the preferred host(s). In that case, myrmecophiles with a relatively 

unspecialized morphology could still employ a specialized defence system specifically 

targeted to their preferred host(s). 

Spatial dynamics of myrmecophiles 

During this thesis, I never observed RWA myrmecophiles running from one mound to 

another or leaving the nest by flying (except the extranidal beetle C. quadripunctata). 

Interestingly, most winged species did not fly when captured. In addition, RWA 

myrmecophiles are seldomly captured with traps (pers. communication T. Struyve). 

These observations suggest that dispersal is relatively limited. A detailed experimental 

approach with techniques such as mark-recapture, pitfalls around the nest and flight 

traps should give a first idea of the dispersal capabilities and frequencies of these 

myrmecophiles. Next, a population-genetic approach can give us insight in gene flow 

between different fragmented forest sites. Population genetic studies on Phengaris (= 

Maculinea) butterflies showed that they are rather good dispersers and can maintain 

fully functional metapopulations when the patches are no further apart than 10 km 

(Ugelvig et al. 2012). It is unclear whether there is gene flow between populations of 

RWA myrmecophiles that live in different forest fragments. The role of the nests of 

other, less preferred, ant species as potential stepping stones to different RWA 

mounds/sites might be vital for a large number of species and should be integrated in 

studies on (RWA) myrmecophile spatial dynamics.  
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CONCLUSION 

In this study, we demonstrated that social insects, and especially ants, can support a 

rich diversity of associated symbionts. Their nests might form complex and dynamic 

micro-ecosystems inhabited by multiple symbionts characterized by different 

strategies. These microcosms are driven by abiotic interactions and biotic interactions 

between host-symbiont and between symbiont-symbiont. We argue that these 

microcosms are ideal model systems to test evolutionary and ecological hypotheses 

on symbiosis in all its facets. I hope that this thesis encourages further research on the 

underexplored, but rewarding topic of social insect symbiont ecosystems.
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