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AAvant-Propos / Foreword 
 
Cette thèse a bénéficié d’une bourse doctorale de recherche financée par l’école doctorale 

E2M2 et d’un soutien financier de l'Agence Nationale de la Recherche via le LABEX IMU de 

l’Université de Lyon (ANR-10-LABX-0088), le programme "Investissements d’Avenir" IDEX Lyon 

(ANR-11-IDEX-0007) et le projet GEOSUD (ANR-10-EWPX-20). Cette thèse de doctorat porte 

sur des problématiques globales s’inscrivant dans le prolongement de travaux conduits à 

l’échelle internationale -- concernant notamment l’espèce invasive Tetramorium immigrans -

- et nécessitant de fait l'intégration de ces recherches aux niveaux européen et international. 

Afin d'en faciliter la restitution et d’assurer son accessibilité et sa plus large diffusion, elle est 

donc rédigée en anglais.  

 

 

 

This thesis has benefited from a doctoral research grant funded by the E2M2 doctoral school 

and from a financial support from the National Research Agency via the LABEX IMU of the 

University of Lyon (ANR-10-LABX-0088 ), the " Investissements d’Avenir" IDEX Lyon program 

(ANR-11-IDEX-0007) and the GEOSUD project (ANR-10-EWPX-20). This thesis deals with global 

issues and is a continuation of work carried out internationally, particularly concerning the 

invasive species Tetramorium immigrans, requiring the integration of this research at 

European and international levels. To ensure their accessibility by the scientific community and 

their wide dissemination, this doctoral thesis is written in English to facilitate the restitution of 

this work. 
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SShort abstract 
Climate change, urbanization, biological invasions and interspecific hybridization are 

among the greatest current threats to biodiversity; their impacts could increase by the end of 
the 21st century. The objective of this thesis was to assess their interactive effects in ant 
species of the Tetramorium caespitum complex from the Rhône-Saône valley, France. Using a 
broad diversity of concepts and tools from biogeography, population genetics, landscape 
ecology, behavioral biology and chemical ecology, I investigated samples from almost two 
thousand colonies from five Tetramorium species including T. immigrans and T. caespitum 
cryptic species. Both climate and urbanization limited the ranges of these species, and 
urbanization impacted their distributions simultaneously at several spatial scales. The 
occurrence probabilities of T. immigrans depended on the interaction between climatic and 
urban factors. Four genetically distinct populations of T. immigrans resulted of several 
introductions from external sources, making it likely not native to Southeastern France, at 
least in the northernmost urban areas. The detection of nuclear DNA backcrosses and 
mitochondrial-nuclear DNA discordance between T. immigrans and T. caespitum suggested 
that hybridization lead to fertile offspring. Differentiated cuticular hydrocarbon profiles and 
heightened interspecific aggression against heterospecific revealed well-differentiated 
species recognition cues. These species presented a monogyne/polyandrous mating system, 
in which hybrid queens but no hybrid fathers contributed to hybrid offspring. So far, studies 
on interspecific hybridization have only occasionally been concerned with concepts such as 
global change or biological invasion. These concepts themselves are infrequently studied 
together, and their interactive effects are totally overlooked in current literature. Taking these 
interrelationships into account and exploring multiple scales are essential to better 
understand the processes that generate patterns of genetic exchange. The joint study of 
polyandry and species discrimination mechanisms within a hybrid zone is unprecedented and 
offers the opportunity to investigate the selective processes involved in the evolution of 
interspecific mating. Many other systems could and should be investigated in the light of these 
results, which strongly suggest an integrated exploration of the many global changes facing 
biodiversity and human populations today. 

 

Keywords: Aggressive behavior, Biological invasion, Chemical communication, Climate, Gene 
flow, Global changes, Interspecific hybridization, Introgression, Landscape genetics, Mating 
system, Pavement ant, Species distribution, Tetramorium sp., Urbanization   
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RRésumé détaillé 

Le changement climatique, l'urbanisation, les invasions biologiques et l'hybridation 
interspécifique constituent pour la biodiversité l'une des plus grandes menaces actuelles, et 
leurs impacts pourraient fortement augmenter d'ici la fin du 21ème siècle. Ces problèmes 
environnementaux sont souvent considérés comme résultant d’accumulations de 
phénomènes indépendants ayant de multiples causes. Cependant, changements globaux, 
invasions biologiques et hybridation interspécifique sont étroitement liés et aggravés par 
l’expansion des activités humaines. Parmi les changements globaux, les changements 
climatiques et l’urbanisation sont des facteurs déterminants de la répartition des espèces et 
constituent donc une menace sérieuse pour la persistance des espèces. Les invasions 
biologiques sont également une cause majeure de préoccupation pour la conservation, 
notamment du fait de la propension des humains à disperser des espèces non indigènes, un 
phénomène qui pourrait surpasser la sélection et la dispersion naturelles. Ces impacts de 
l’homme sur son environnement sont à l’origine de nouvelles possibilités d’hybridation entre 
des espèces auparavant allopatriques qui se sont déplacées et se sont rencontrées. Ainsi, les 
changements climatiques, l'urbanisation et les introductions biologiques pourraient agir en 
interaction et promouvoir de nouveaux échanges génétiques interspécifiques. 

 
En raison de leur organisation sociale, leur comportement de reproduction et leur 

haplo-diploïdie, les fourmis (famille des formicidés) sont particulièrement sujettes à 
l’hybridation interspécifique. Les déplacements accidentels de colonies par l’homme, par 
exemple dans le cadre du commerce international de fleurs en pot, induisent de fréquentes 
introductions biologiques de ces organismes en dehors de leurs aires de répartition d’origine. 
Ces évènements d’introduction favorisent l'établissement de nouvelles zones de contact entre 
espèces, générant des échanges génétiques entre les taxons natifs et introduits. La plupart 
des espèces de fourmis sont spécialisées pour certains types d’habitats ou de micro-habitats, 
et leur répartition et leur écologie sont fortement influencées par le climat, notamment les 
paramètres liés aux températures et aux précipitations. Les patrons d'activité annuels et 
quotidiens ainsi que l’initiation de la reproduction et de la dispersion dépendent directement 
de déclencheurs environnementaux, eux-mêmes sous influence des changements 
climatiques. Les fourmis comptent plusieurs espèces communes dans les villes, mais aussi de 
nombreuses espèces affectées négativement par l'urbanisation. Ces caractéristiques en font 
un taxon pertinent pour étudier les relations entre les changements globaux, l'invasion et 
l'hybridation. 
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J'ai travaillé sur cinq espèces de fourmis appartenant au genre Tetramorium, en 
m’intéressant plus particulièrement aux espèces cryptiques T. immigrans et T. caespitum, 
ayant récemment fait l'objet d'une révision taxonomique. Avant la présente thèse, la biologie, 
l’histoire et l’écologie de ces espèces étaient très peu connues. Leur distribution à échelle 
précise en France, l'impact de l'urbanisation sur ces taxons ou leurs systèmes d'accouplement 
n’avaient par exemple jamais été étudiés. Des études antérieures avaient posé l’hypothèse 
d’une hybridation entre T. immigrans et T. caespitum suite à l’observation de deux individus 
présentant une discordance entre leurs ADN nucléaire et mitochondrial, mais cette 
hybridation n'avait pas encore été étudiée. Tetramorium immigrans est une espèce 
particulièrement intéressante car invasive en Amérique du Nord, où elle a été introduite dans 
des villes au 19ème siècle, voire plus tôt. Elle est considérée indigène en Europe où son statut 
n’a jamais été remis en question. 

Mes investigations ont été menées dans les vallées du Rhône et de la Saône (Sud-est 
de la France, Europe occidentale), une zone particulièrement pertinente pour étudier les 
problèmes liés aux changements globaux, aux invasions biologiques, à la répartition des 
espèces et aux échanges génétiques entre espèces. Ces vallées recouvrent un gradient 
climatique et environnemental le long d’un axe Nord-Sud qui traverse la frontière entre les 
régions biogéographiques méditerranéennes et continentales. En raison de sa situation 
intermédiaire entre les refuges glaciaires des péninsules ibériques, italiennes et balkaniques, 
cette zone correspond également à une importante voie de recolonisation postglaciaire. Les 
Alpes agissent pour de nombreux organismes comme une barrière de dispersion, générant 
dans les vallées un réseau de zones de contact conduisant à des zones d'hybridation. La vallée 
Rhône-Saône est urbanisée depuis l'époque romaine et les processus d'urbanisation sont 
encore importants aujourd'hui, donnant naissance à de vastes zones urbaines en expansion 
constante. Cette zone est donc particulièrement adaptée à l'étude des impacts de 
l'urbanisation. La vallée connaît également une forte croissance de ses activités de transport 
et de logistique et, par conséquent, elle présente des risques majeurs d’introduction 
d’organismes exogènes, et donc une forte sensibilité aux risques d’invasions biologiques. 

L'objectif de cette thèse était donc d'évaluer les effets relatifs de l'urbanisation et du 
climat sur les échanges de gènes et les schémas d'hybridation entre les espèces de fourmis du 
complexe Tetramorium caespitum dans la vallée du Rhône-Saône. Pour mener à bien ces 
travaux, j’ai mobilisé une grande diversité d'outils (tels que des marqueurs moléculaires, les 
SIG, la technique de chromatographie en phase gazeuse) issus de la biogéographie, de la 
génétique des populations, de l'écologie du paysage, de la biologie comportementale et de 
l'écologie chimique. Cette synthèse de trois années de recherche fournit une perspective 
intégrée sur les réponses de la biodiversité aux changements globaux à travers l’étude des 
échanges génétiques. 
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Le Chapitre 1 présente la thèse et donne un bref aperçu des principaux thèmes 
développés, à savoir comment les espèces, en particulier les fourmis, réagissent aux 
changements globaux, et quelles sont les conséquences sur les invasions biologiques et les 
échanges génétiques interspécifiques. 
 

Le Chapitre 2 examine les limites de l'aire de répartition le long d’un gradient 
climatique (la vallée Rhône-Saône) de cinq espèces de Tetramorium constituant un groupe 
d'espèces incluant des taxons cryptiques, en tenant compte des erreurs attribuables à la fois 
à l'hybridation et à la rareté. Pour cela, près de 1700 colonies appartenant au genre 
Tetramorium ont été échantillonnées et identifiées au niveau de l’espèce en utilisant une 
approche intégrative basée sur un processus en deux étapes combinant ADN nucléaire (14 
marqueurs microsatellites), examen morphologique et séquençage de l'ADN mitochondrial 
(Cytochrome Oxydase I). Cinq espèces de Tetramorium ont été identifiées : T. forte, 
T. moravicum, T. semilaeve, T. immigrans et T. caespitum. Les distributions spatiales des trois 
dernières étaient fortement corrélées aux conditions climatiques. Les limites de distribution 
de la plupart des espèces correspondaient à la limite biogéographique entre les régions 
continentales et méditerranéennes, sauf pour T. immigrans dont la répartition couvrait les 
deux régions. Tetramorium caespitum a été principalement trouvé au nord de la limite, tandis 
que T. semilaeve et T. forte ont été trouvés au sud. T. moravicum a été trouvé principalement 
près de la limite, avec peu d’occurrences dans les sites plus au nord. Ces résultats mettent en 
évidence le rôle fondamental du climat en tant que facteur limitant les aires de répartition des 
espèces au niveau d’une limite biogéographique importante. La seconde partie du chapitre 2 
porte sur la structuration de la distribution des fourmis du genre Tetramorium à différentes 
échelles spatiales en réponse à l’urbanisation. Sur la base des méthodes de combinaison de 
modèles (model averaging), j'ai étudié environ 1400 sites de nidification appartenant à quatre 
espèces de Tetramorium à quatre échelles spatiales distinctes (du micro-habitat au paysage) 
dans 19 gradients urbains. J'ai montré que les probabilités d'occurrence de Tetramorium 
caespitum et de T. immigrans dépendaient simultanément de l'urbanisation au niveau du 
paysage et aux échelles locales. En effet, T. caespitum évite les microhabitats urbains et les 
paysages imperméabilisés alors que T. immigrans est extrêmement présente dans de tels 
milieux. Ces impacts d'échelle de l'urbanisation dépendaient des espèces : Tetramorium 
moravicum était associée à des paysages non urbains uniquement, alors qu’aucune 
préférence n’a été mise en évidence pour T. semilaeve, quelles que soient les variables 
testées. Ces résultats démontrent l'importance de considérer simultanément plusieurs 
échelles spatiales pour étudier l'impact de l'urbanisation sur la distribution des espèces. Les 
réponses très contrastées à l'urbanisation de T. immigrans et de T. caespitum indiquent 
probablement des processus de partitionnement de niche induits par l'urbanisation. 
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Le Chapitre 3 porte sur l’étude de l'influence combinée des changements globaux sur 
l'expansion de Tetramorium immigrans. A partir de l’échantillonnage de 544 individus de 
T. immigrans prélevés dans 16 gradients urbains et génotypés pour 14 marqueurs 
microsatellites, j'ai combiné l’utilisation de méthodes d’écologie moléculaire (analyses 
bayésiennes et basées sur la fréquence) et de modèles statistiques pour évaluer l’impact de 
l’interaction entre le climat et l’urbanisation sur la distribution de cette espèce. Les 
probabilités d'occurrence de T. immigrans dépendaient de l'interaction entre les facteurs 
climatiques et urbains. Deux groupes génétiques de T. immigrans distincts latitudinalement 
étaient structurés hiérarchiquement en deux sous-groupes, suggérant des histoires de 
colonisation différentes. De forts effets fondateurs ont indiqué des introductions successives 
depuis des populations sources externes à la zone d’étude, suivies par une colonisation 
favorisée par les activités humaines dans les zones urbaines du nord. Bien que l’effet de 
l’interaction climat-urbanisation sur la distribution des espèces soit souvent négligé dans la 
littérature, de nombreux taxons peuvent se conformer au modèle de T. immigrans. L’étude 
combinée des changements globaux est donc importante et devrait être envisagée dans les 
études futures. La fin du chapitre considère le fait que les modèles de distribution observés 
concordent avec des patrons de distribution similaires dans l'aire de répartition invasive de 
T. immigrans, ce qui rend probable que cette espèce ne soit pas originaire du sud-est de la 
France, du moins dans les zones urbaines les plus septentrionales. 

 
Le Chapitre 4 porte sur l'hybridation entre Tetramorium immigrans et T. caespitum de 

laquelle résulte une progéniture fertile. Cette introgression a été mise en évidence par la 
détection de rétrocroisements basée sur 14 microsatellites nucléaires, mais également par 
plusieurs occurrences de discordance entre les identifications basées sur l’ADN mitochondrial 
et l’ADN nucléaire. Les résultats étaient cohérents sur le plan spatial, car les individus identifiés 
comme étant hybrides étaient situés à des latitudes auxquelles les deux espèces parentales 
coexistent en sympatrie. J'ai ensuite étudié la reconnaissance des espèces et la discrimination 
entre Tetramorium immigrans, T. caespitum et les hybrides en comparant leurs profils 
d'hydrocarbures cuticulaires et en mesurant l'agressivité intra- et interspécifique des 
ouvrières stériles issues, soit des zones de sympatrie entre les espèces, soit des zones 
d'allopatrie. L’étude montre que les individus des espèces parentales ainsi que les hybrides 
présentent des profils d'hydrocarbures cuticulaires différenciés et une agression accrue 
envers les membres hétérospécifiques, ce qui implique des indices de reconnaissance des 
espèces bien différenciés. Les hybrides avaient des profils d'hydrocarbures cuticulaires 
correspondant à un mélange de bouquets parentaux, mais le signal chimique des hybrides 
présentait certains composés dans des quantités plus élevées que les deux espèces 
parentales. Les tests comportementaux ont montré que T. immigrans était aussi agressif 
envers les hybrides que contre les hétérospécifiques. L'agression entre les ouvrières 
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hétérospécifiques était plus forte lorsque les protagonistes étaient issus de zones où les 
espèces parentales sont en sympatrie que des zones d'allopatrie. Ces résultats soulignent que 
les zones hybrides offrent une occasion unique d’examiner en profondeur les mécanismes de 
reconnaissance et de discrimination entre les espèces. Dans une troisième étude s’intéressant 
plus particulièrement aux hybrides, j’ai analysé 15 marqueurs microsatellites sur 15 fourmis 
par colonie dans 28 colonies pures de Tetramorium immigrans, 15 colonies pures de 
T. caespitum et 27 colonies hybrides. Cette étude a révélé que le système de reproduction de 
ces espèces était un système d'accouplement monogyne/polyandre, avec un taux 
d’accouplement plus élevé chez T. caespitum. J’ai déduit du génotype des ouvrières qu’elles 
descendaient parfois de reines hybrides, mais jamais de pères hybrides. Ce résultat est 
conforme à la règle de Haldane étendue aux organismes haplodiploïdes, selon laquelle le sexe 
haploïde devrait plus souvent être stérile ou non-viable. Dans quatre colonies, l'hybridation et 
la reproduction multiple ont permis la production simultanée de descendants hybrides et non-
hybrides. Bien que rares, ces situations suggéraient que dans les colonies possédant une reine 
T. caespitum, les différents mâles accouplés à la reine contribuent de manière asymétrique à 
la production de la progéniture, avec plus de descendant issus des mâles hétérospécifiques 
que des mâles conspécifiques. Une telle étude conjointe de la polyandrie dans une zone 
hybride est sans précédent et ouvre la possibilité d’étudier les processus sélectifs impliqués 
dans l’évolution de l’accouplement multiple. 

 
Enfin, le Chapitre 5 synthétise brièvement les chapitres précédents avant de discuter 

l’ensemble des résultats obtenus au travers de cette thèse. Cette partie expose notamment 
le fait que les patrons décrits par les résultats de ces recherches sont plus complexes que 
supposé initialement. En effet, l'urbanisation, le climat et les invasions biologiques n'ont pas 
agi séparément et individuellement sur la distribution des espèces étudiées. J'ai montré que 
l'urbanisation affecte directement les flux de gènes et l'hybridation par des modifications de 
l'habitat et par la création d'écotones à la périphérie des zones urbaines. De plus, les 
modifications des échanges génétiques intra- et interspécifiques décrites dans cette thèse ont 
probablement joué un rôle dans l'histoire de l'invasion de T. immigrans, en association avec 
l'urbanisation et le climat.  
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Les études sur l'hybridation interspécifique n'ont été qu'occasionnellement liées à des 
concepts tels que les changements globaux ou les invasions biologiques. Ces concepts eux-
mêmes sont peu étudiés de manière concomitante et leurs effets interactifs sont totalement 
ignorés dans la littérature actuelle. Mes recherches portent donc sur une nouvelle 
compréhension de la relation entre les invasions biologiques, l'urbanisation et l'hybridation 
entre les espèces. La prise en compte de ces interrelations et l’exploration de multiples 
échelles sont essentielles pour mieux comprendre les processus qui génèrent des modèles 
d’échanges génétiques. L’étude des mécanismes de reconnaissance et l’étude de la polyandrie 
dans une zone hybride sont sans précédent et ouvrent la possibilité d'étudier les processus 
sélectifs impliqués dans l'évolution de l'accouplement interspécifique. 
 

Forte de ces résultats, ma thèse ouvre quatre grandes perspectives, qui peuvent être 
appréhendées sous forme de questions.  

 
(i) D'où vient Tetramorium immigrans ? Aujourd'hui, T. immigrans n'est connue que dans 

des localités sporadiques à travers l'Europe. Un échantillonnage uniforme à l'échelle du 
continent et mobilisant systématiquement une approche basée sur la génétique permettrait 
de mettre en évidence des modèles de diversité génétique conduisant à la localisation des 
populations sources probables. En outre, une telle approche devrait confirmer que 
T. immigrans n'est pas originaire du sud-est de la France. Une comparaison spatialement 
explicite des haplotypes issus des séquences d'ADN mitochondrial pourrait également aider à 
l’identification des populations sources, et ainsi les zones d'origine de T. immigrans.  

 
(ii) Pourquoi T. immigrans est-elle un remarquable « exploiteur urbain » ? Tetramorium 

immigrans a pu, par le passé, se répandre progressivement et à une vitesse limitée dans les 
vallées du Rhône et de la Saône. Cependant, sa propagation pourrait être plus rapide et de 
plus large envergure dans les prochaines décennies. Une telle accélération est probable en 
raison des opportunités de plus en plus nombreuses de dispersion par les transports humains, 
favorisant l’établissement de nouveaux foyers d’invasion bien en avance sur le front de 
dispersion de l’espèce, faisant rapidement progresser l’invasion. Ces évènements de 
dispersion s’ajoutent aux effets combinés de l’étalement urbain et du réchauffement 
climatique, eux aussi susceptibles d’accélérer la propagation de cette espèce. L’exploration 
des caractéristiques écologiques et fonctionnelles de T. immigrans faisant de cette espèce un 
exploiteur urbain aussi remarquable présente un intérêt primordial pour l’écologie de l’espèce 
et la compréhension des mécanismes impliqués dans l’exclusion compétitive de T. caespitum 
en dehors des villes. Je suggère donc que d’autres études prennent en compte le rôle de la 
tolérance de T. immigrans à de multiples stress lui conférant la capacité d’être une espèce 
dominante dans les zones urbaines.  
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(iii) Comment T. immigrans et T. caespitum surmontent-elles les obstacles à 

l’hybridation ? Le chevauchement de phénologie au moment de la reproduction devrait faire 
l’objet d’un examen plus approfondi dans la zone hybride, car un tel chevauchement pourrait 
être favorisé par le contexte écologique fourni par l’interaction entre le climat et 
l’urbanisation. Il est également nécessaire d'étudier si les individus reproducteurs sont 
capables de discriminer l'identité du partenaire avant et pendant l'accouplement, car la 
discrimination des hétérospécifiques par les individus reproducteurs peut différer de celle des 
ouvrières. En effet, les signaux de fertilité pourraient par exemple homogénéiser les profils 
des reproducteurs et réduire leur capacité à utiliser les signaux distinctifs des espèces. Enfin, 
l’exploration des rôles joués par les barrières postzygotiques pourrait apporter un nouvel 
éclairage sur les processus de sélection naturelle et sexuelle déterminant la viabilité et la 
fertilité des hybrides et de leur progéniture. De telles questions pourraient notamment être 
abordées à travers la comparaison entre les biais d’insémination (c.-à-d. entre spermatozoïdes 
hétérospécifiques et conspécifiques) et les biais dans la production de descendants à 
différents stades de maturité. 

 
(iv) Que nous disent les tendances observées sur l’avenir de la zone hybride ? Le modèle 

clinal de la zone hybride T. immigrans x caespitum peut être maintenu par sélection endogène 
contre des génotypes hybrides (zones de tension), par sélection favorisant différents types 
parentaux à chaque extrémité d'un gradient environnemental, ou par sélection dans des 
habitats intermédiaires favorisant les individus d'ascendance mixte (modèle de supériorité 
hybride). Le modèle de zone de tension prédit que le centre de la zone hybride devrait 
correspondre à une zone de faible densité de population des espèces parentales. Un tel patron 
pourrait être confirmé dans le système T. immigrans x caespitum en étudiant les densités 
d’espèces pures dans la zone hybride de sorte à comparer ces densités à celles observées dans 
les zones où les espèces sont allopatriques. En raison de la position intermédiaire des zones 
hybrides entre les habitats majoritairement urbanisés et les environnements plus naturels, les 
hybrides pourraient avoir connu des conditions écologiques différentes des espèces 
parentales dans les paysages agricoles qui entourent les zones urbanisées. Il est donc possible 
que des génotypes ou phénotypes hybrides spécifiques soient soumis à des processus de 
sélection relativement importants dans cette zone hybride. Une telle distribution 
indépendante de la dispersion à travers les paysages pourrait être cohérente avec le modèle 
de supériorité hybride limitée aux écotones étroits. La possibilité d'une spécialisation pour les 
habitats agricoles devrait induire des niches écologiques différentes entre les hybrides et les 
espèces parentales, soit parce que les espèces pures présentent une moins bonne aptitude 
dans ces habitats, soit que l'aptitude des hybrides est plus élevée dans ces habitats. 
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Les résultats et les recommandations découlant de ces travaux ne se limitent pas au seul 
système biologique de T. immigrans x caespitum. Bien que la zone hybride présentée dans 
cette étude soit particulièrement adaptée à l’étude des problématiques abordées, il serait 
pertinent de reproduire l'étude dans d'autres zones d'hybridation entre T. immigrans et 
T. caespitum (si de telles zones existent). Plus important encore, ces questions peuvent être 
exportées vers d'autres systèmes d'hybridation, impliquant d'autres espèces envahissantes, 
afin d’évaluer la robustesse du cadre théorique et tester la force des interactions entre les 
changements globaux, l'hybridation et l'invasion chez d’autres taxons. De nombreux autres 
systèmes pourraient et devraient être étudiés à la lumière de ces conclusions, qui plaident 
fortement pour une étude plus intégrée des nombreux changements globaux auxquels sont 
aujourd’hui confrontées la biodiversité et les populations humaines. 
 
Mots - clés : Changements globaux, Climat, Communication chimique, Comportement 
d’aggressivité, Distribution des espèces, Flux de gènes, Génétique du paysage, Hybridation 
interspécifique, Introgression, Invasion biologique, Système de reproduction, Tetramorium 
sp., Urbanisation   
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DDetailed abstract 
Climate change, urbanization, biological invasions and interspecific hybridization are 

among the greatest current threats to biodiversity and their impacts could increase by the end 

of the 21st century. These environmental issues are often considered an accumulation of 

independent phenomena with multiple causes. However, these threats are deeply 
intertwined and aggravated by the expansion of human activities. Among global changes, 

climate changes and urbanization are major determinants of species’ distribution and 

therefore pose a serious threat to species’ persistence. Biological invasions are also a leading 

cause of conservation concern, because humans as dispersers of nonindigenous species could 

surpass natural selection and dispersal. These impacts of humans on their environment have 
created new opportunities for hybridization between previously allopatric species which 

have moved and met. Climate changes, urbanization and biological introductions could 

therefore act in interaction to promote interspecific genetic exchanges.  

Because of their social organization, reproductive behavior and haplo-diploidy, ants 

(family Formicidae) are particularly prone to interspecific hybridization. The frequent 
biological introductions of these organisms, particularly due to the accidental human 

movements of colonies, for example via the international trade in potted flowers, favor the 

establishment of novel contact zones between species, leading to genetic exchanges between 

native and introduced taxa. Most ant species are habitat or microhabitat specialists whose 
distribution and ecology are strongly influenced by climate (i.e. temperature or precipitation). 

Annual and daily activity patterns as well as the timing of reproduction and dispersal depends 

on environmental triggers that climate changes might disrupt. Ants include several species 

common in cities as well as others negatively impacted by urbanization. These characteristics 

make it a relevant taxon for studying the relationships between global changes, invasion and 
hybridization. I worked on five species of Tetramorium ants, with a focus on the cryptic species 

T. immigrans and T. caespitum which have recently been subject to taxonomic revision. Before 

the present thesis, little was known on their biology, life history and ecology (e.g., about their 

fine-scale distributions in France, the impact of urbanization on these taxa, or their mating 

systems). Previous studies suspected hybridization between T. immigrans and T. caespitum, 
based on mitochondrial-nuclear discordance, but this hybridization had not been further 

investigated. Tetramorium immigrans is particularly worth studying because it is an invasive 

species in North America, where it was introduced in cities in the 19th century or earlier, and 

considered native in Europe where its status had never been questioned. 
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My investigations were conducted in the Rhône-Saône valley, which is especially 
relevant to investigate issues related to global changes, biological invasions, species 
distribution and genetic exchange between species. This valley spans a steep North-South 
climatic and environmental gradient across the boundary between the Mediterranean and 
Continental biogeographical regions in Southeastern France, Western Europe. Due to its 
intermediate location between glacial refugees of  the Iberian, Italian and Balkan peninsulas, 
it also corresponds to a major postglacial recolonization route. As a consequence, a network 
of contact zones is spread over this valley as the Alps mountain often act as a dispersal barrier, 
inducing secondary contact between populations and species and leading to hybridization 
areas. The Rhône-Saône valley is urbanized since Roman times and urbanization processes are 
still important today, giving birth to large and constantly expanding urban areas which are 
particularly suited for the study of the impacts of urbanization. The valley is also experiencing 
further growth in its transport and logistic activities and, as a consequence, is an area of major 
risks of biological invasions. 

The objective of this thesis was therefore to assess the relative effects of urbanization 
and climate on gene exchanges and hybridization patterns between ant species of the 
Tetramorium caespitum complex from the Rhône- Saône valley. I therefore used a broad 
diversity of concepts and tools (e.g. Molecular markers, GIS technology, Gas Chromatography) 
from biogeography, population genetics, landscape ecology, behavioral biology and chemical 
ecology. This synthesis of three years of research provides an integrative perspective on the 
responses of biodiversity to global changes through genetic exchanges. 
 

Chapter 1 introduces the thesis and provides a short review of the main topics of the 
thesis, i.e. how species, especially ants, respond to global changes and consequences on 
biological invasions and interspecific genetic exchanges. 
 

Chapter 2 investigates the range limits over a climatic gradient (along the Rhône -
Saône valley) of five Tetramorium species constituting a group of inconspicuous species 
including cryptic taxa, taking into account and avoiding errors attributable to both 
hybridization and rarity. Close to 1700 Tetramorium colonies were sampled and identified at 
species level using an integrative approach based on a two-step process combining nuclear 
DNA (14 microsatellite markers), morphological examination and mitochondrial DNA 
cytochrome oxidase I sequencing. Five Tetramorium species were identified: T. forte, 
T. moravicum, T. semilaeve, T. immigrans, and T. caespitum. The spatial distributions of the 
last three were strongly correlated to climatic conditions. The limits to the distribution of most 
species corresponded to the biogeographical boundary between the Continental and 
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Mediterranean regions, except for T. immigrans whose distribution covered both regions. 
T. caespitum was mostly found north of the boundary, while T. semilaeve and T. forte were 
found to the South. T. moravicum was found mostly close to the boundary, with few locations 
further north. These results highlight the fundamental role of climate as a factor limiting the 
species ranges at a well-known biogeographical limit. A second study within Chapter 2 
investigates how urbanization structures the distribution of Tetramorium ants at different 
spatial scales. Based on model averaging procedures, I studied ~1400 nesting sites belonging 
to four Tetramorium species at four distinct spatial scales, from urban microhabitat to urban 
landscape in 19 urban gradients. I showed that the probabilities of occurrences of 
Tetramorium caespitum and T. immigrans simultaneously depended on urbanization at the 
landscape and local scales, with T. caespitum avoiding urban microhabitats and impervious 
landscapes whereas T. immigrans favored them. These scaling impacts of urbanization were 
species-dependent as T. moravicum was associated with nonurban landscapes only, and 
T. semilaeve showed no association whatever the tested variables. These results demonstrate 
the importance of considering several spatial scales simultaneously to study the impact of 
urbanization on species distribution. The highly contrasted responses to urbanization of 
T. immigrans and T. caespitum indicate niche partitioning processes driven by urbanization. 
 

Chapter 3 investigates the combined influence of global changes on the expansion of 
the pavement ant Tetramorium immigrans. Based on 544 T. immigrans individuals sampled 
from 16 urban gradients and genotyped at 14 microsatellite markers, I combined molecular 
ecology methods (Bayesian and frequency-based analyses) and statistical modelling to 
evaluate the impact of the interaction between climate and urbanization on the pavement ant 
distribution patterns. The occurrence probabilities of T. immigrans depended on the 
interaction between climatic and urban factors. Two latitudinally distinct clusters of 
T. immigrans were hierarchically structured in two sub-clusters each, suggesting different 
colonization histories. Strong founder effects indicated introductions from external sources 
followed by colonization favoured by human activities in the northern urban areas. Despite 
the fact that the effect of climate-urbanization interaction on species distribution is mostly 
overlooked in the literature, many taxa may conform to T. immigrans pattern, making the 
combined study of global changes a necessary challenge for future studies. The end of the 
Chapter discusses the fact that the observed distribution patterns concurred with similar 
observations in the invasive range of T. immigrans, making it likely that it may not be native 
to Southeastern France, at least in the northernmost urban areas.  
 

In Chapter 4, hybridization between Tetramorium immigrans and T. caespitum is 
shown to lead to fertile offspring. This introgression was revealed both by backcross detection 
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based on 14 nuclear microsatellite loci and by mitochondrial-nuclear discordance based on 
comparison with mitochondrial DNA (Cytochrome Oxidase I). Results were spatially 
consistent, with hybrids located at latitudes where parental species are sympatric. I then 
investigated species recognition and discrimination between Tetramorium immigrans, 
T. caespitum and hybrids by comparing their cuticular hydrocarbon profiles and measuring 
intra- and interspecific worker aggression in both workers from zones of sympatry between 
species and from zones of allopatry. Differentiated cuticular hydrocarbon profiles and 
heightened interspecific aggression revealed well-differentiated species recognition cues. 
Hybrids had cuticular hydrocarbon profiles corresponding to a mixture of parental bouquets, 
but the chemical signal of hybrids presented higher amounts of some compounds than both 
parental species. Behavioral assays showed that T. immigrans was as aggressive towards 
hybrids as towards heterospecifics. Aggression between heterospecific workers was higher 
when protagonists came from zones of sympatry between species than from zones of 
allopatry. These results highlight that hybrid zones offer a unique opportunity to deeply 
investigate recognition mechanisms and discrimination between species. In a third study on 
hybrids, the analysis of microsatellite markers on 15 ant workers per colony revealed that the 
mating system of 28 pure colonies of Tetramorium immigrans, 15 pure colonies of 
T. caespitum and 27 hybrid colonies was a monogyne/polyandrous mating system, with a 
higher mating rate in T. caespitum. Hybrid queens, but no hybrid fathers, could be deduced 
from workers’ genotypes, in accordance to Haldane’s rule extended to haplodiploid 
organisms, which states that the haploid sex should more often be sterile or inviable. In four 
colonies, hybridization and multiple mating allowed the simultaneous production of both 
hybrid and nonhybrid offspring. Although rare, these situations hinted at asymmetrical 
contributions to offspring in favor of heterospecific vs. conspecific males in colonies with a 
T. caespitum queen. Such a study of polyandry within a hybrid zone is unprecedented in ants 
and opens the opportunity to investigate the selective processes involved in the evolution of 
multiple mating. 
 

Chapter 5 briefly synthetizes the previous chapters before discussing all the results of 
the thesis. The patterns I describe are rather more complex that I initially supposed. Indeed, 
urbanization, climate and biological invasions did not act separately and individually on 
Tetramorium species distributions. I have shown that urbanization directly affects gene flow 
and hybridization through habitat modifications and the creation of ecotones at the edge of 
urban areas. Furthermore, modifications in gene flow and the interspecific hybridization 
newly described in this thesis have probably played a role in the invasion history of 
T. immigrans, working in conjunction with urbanization and climate.  
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Studies on interspecific hybridization have only occasionally been concerned with 

concepts such as global change or biological invasion. These concepts themselves are 
infrequently studied together, and their interactive effects are totally overlooked in current 
literature. All of my research therefore points towards new understanding of the 
interrelationship between biological invasions, urbanization and hybridization. Taking these 
interrelationships into account and exploring multiple scales are essential to better 
understand the processes that generate patterns of genetic exchange. The joint study of 
polyandry and species discrimination mechanisms within a hybrid zone is unprecedented and 
opens the opportunity to investigate the selective processes involved in the evolution of 
interspecific mating. 
 

My thesis opens up four main questions. (i) Where did Tetramorium immigrans come 
from? Today, Tetramorium immigrans is known only from sporadic localities over all of 
Europe. A continent-wide uniform sampling mobilizing genetic tools would reveal genetic 
diversity patterns leading to the location of the probable source populations and should 
confirm that T. immigrans is not native to Southeastern France. Based on mitochondrial DNA 
barcoding, spatially explicit comparison of haplotypes could also help pinpoint source 
populations and the native area of T. immigrans. (ii) Why is T. immigrans a remarkable urban 
exploiter? T. immigrans may spread slowly in the Rhône-Saône valley, but further spread may 
likely be faster and at a broader spatial extent in the coming decades. This acceleration is 
expected because of “jump-dispersal” by human transport, which establishes new foci of 
invasion well ahead of the expanding front, rapidly advancing the invasion, and because of the 
combined effects of urban sprawl and climate warming promoting its establishment. Exploring 
the ecological and functional traits of Tetramorium immigrans that make it such a remarkable 
urban exploiter is of prime interest for the ecology of the species and the understanding of 
the mechanisms involved in competitive exclusion of T. caespitum from cities. I therefore 
suggest further studies take into account the role of multi-stress tolerance in T. immigrans’ 
ability to be dominant in urban areas. (iii) How do T. immigrans and T. caespitum overcome 
the barriers to hybridization? The overlapping of reproductive phenology within the hybrid 
zone should be further investigated as it could be promoted by the ecological context provided 
by the interaction between climate and urbanization. It is also necessary to investigating if 
reproductive individuals are able to discriminate the identity of the partner before and during 
mating, as the discrimination of heterospecifics by reproductive may differ from that of 
workers, e.g. if fertility signals homogenize their profiles and reduce their ability to use 
species-specific differences. Finally, the exploration of the roles of postzygotic barriers 
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through the comparisons between insemination bias (i.e. between heterospecific and 
homospecific sperm) and offspring bias observed at different stages could bring new light on 
the natural and sexual selection processes involved and could allow a better understanding of 
the viability and fertility of both hybrids and their offspring. (iv) What do the observed patterns 
tell us about the future of the hybrid zone? The T. immigrans x caespitum hybrid zone clinal 
pattern may be maintained by endogenous selection against hybrid genotypes (tension 
zones), by selection favoring different parental types at each end of an environmental 
gradient, or by selection in intermediate habitats favoring individuals of mixed ancestry 
(bounded hybrid superiority model). The “tension zone” model predicts that the center of the 
hybrid zone should correspond to an area of low population density, which could be confirmed 
in the T. immigrans x caespitum system by investigating the densities of pure species in the 
hybrid zone compared to their densities in allopatric areas. Because of the intermediate 
location of the hybrid zones between mostly urbanized habitats and more natural 
environments, hybrids could have experienced ecological conditions different from parental 
species in agricultural landscapes that surround the urbanized areas. It is therefore possible 
that specific hybrid genotypes or phenotypes have experienced relatively strong selection in 
this hybrid zone. Such a distribution across landscapes could be consistent with the dispersal-
independent model of bounded hybrid superiority within narrow ecotones. The possibility of 
a specialization for agricultural habitats should induce different ecological niches in hybrids 
compared to parental species, either because pure species have a lower fitness in these 
habitats or because the fitness of hybrids is higher in these habitats.  
 

The results and recommendations ensuing from this work are not limited to the sole 
T. immigrans x caespitum biological system. Although the hybrid zone presented in this study 
is particularly suited to the issues addressed, it would be relevant to replicate the study in 
other areas of hybridization between T. immigrans and T. caespitum (if such hybrid zones 
exist). Above all, however, these issues may be exported to other hybridization systems, to 
other invasive species to evaluate the robustness of the theoretical framework and to test the 
strength of the interactions between global changes, hybridization and invasion across taxa. 
Many other systems could and should be investigated in the light of these results, which 
strongly suggest an integrated exploration of the many global changes facing biodiversity and 
human populations today. 

 

Keywords: Aggressive behavior, Biological invasion, Chemical communication, Climate, Gene 
flow, Global changes, Interspecific hybridization, Introgression, Landscape genetics, Mating 
system, Pavement ant, Species distribution, Tetramorium sp., Urbanization    
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« The great challenge of the twenty-first century is to 
raise people everywhere to a decent standard of living 
while preserving as much of the rest of life as possible.» 

Edward O. Wilson 
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1.1- PREAMBLE 

When I started my PhD formation in October 2015, I joined the Ecology 

Ecophysiology and Behavior research team within the LEHNA - Laboratory of Natural 

and Human-impacted Hydrosystems. As for most of the theses, my PhD did not go 

exactly according to the original plan. Starting from a main focus in landscape genetics 

with a particular emphasis on the historic and contemporary impacts of urbanization on 

gene flows, I ended up working on biogeography, interspecific hybridization, and later 

behavioral ecology, and even chemical ecology. This manuscript compiles the work I did 

in the last three years and reflects the evolution of my PhD subject.  

 

In the present Chapter, I give a general overview of the topic of my PhD: “Impacts 

of global changes on biological invasions and interspecific hybridization within the 

Tetramorium caespitum ant species complex”. This problematic requires the mobilization 

of many concepts and tools to apprehend the different papers the manuscript is structured 

around. One of the most efficient ways to circumscribe a subject is by clarifying related 

issues. The structure of this introduction will thus be articulated around the 

developpement of some concepts and definitions of the most important issues that are 

“global changes”, “biological invasions” and “interspecific hybridization”.  

 

I will start by introducing the concepts associated to global changes relevant to 

this study. The second part will introduce the different forms of biological invasions and 

the different features of invasive species. In the third part of the introduction, I will briefly 

point out the importance of genetic exchanges, with a focus on interspecific gene flows 

and setting up of hybrid zones. The fourth and fifth parts will introduce the specificities 

related to the biological and spatial models I used during my researches. Finally, a sixth 

part will be dedicated to the presentation of the different chapters of this thesis. 
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1.2- BRIEF OVERVIEW OF TWO MAJOR GLOBAL CHANGES  

Environmental issues are often considered an accumulation of independent 

phenomena with multiple causes, e.g. biodiversity erosion, soil degradation, or chemical 

pollution of water. However, these concerns are deeply intertwined and aggravated by the 

expansion of human activities. Biodiversity faces growing pressures from human actions, 

including habitat conversion and degradation, habitat fragmentation, overharvesting, 

pollution, and climate changes (Tittensor et al. 2014). These large-scale environmental 

changes are now clearly visible at a planetary scale, hence often termed "Global changes". 

Global changes are thus a set of changes recorded over the environment directly or 

indirectly related to human activities that have global implications for human life and 

ecosystems. In this section, I briefly review two intensely studied global changes: climate 

changes and urbanization. 

 

1.2.1- Climate changes  

Climate changes are changes in the trend of a climate variable, such as temperature 

or rainfall, or in the frequency of climatic events, such as floods and droughts over time. 

Climatic changes for the 21st-century, most notably global warming, are comparable in 

magnitude to the largest global changes in the past 65 million years (Diffenbaugh et al. 

2013; Kemp et al. 2015). Since 1880 there has been an average global warming of 0.85°C 

(IPCC 2014). As a result of climates changes, global assessments show that species’ 

extinction risk is increasing on average while population sizes are declining (Pimm et al. 

2014). Climate changes therefore may pose a serious threat to species’ persistence 

(Parmesan 2006; Bellard et al. 2012). Climate projections foresee global warming, sea 

level rise and an increase in the frequency and intensity of extreme events (Solomon et 

al. 2007).  

 

Such climate changes will have considerable impacts on biodiversity, from 

organism to biome levels (Parmesan 2006). Climate changes therefore affect fitness of 

individuals, populations, species and ecosystems. Changes in temperatures can affect 

survival, reproduction and geographical distribution of organisms (Bale et al. 2002).  
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For example, increasing temperatures induced changes in phenology, leading to an earlier 

apparition of butterflies, earlier return of migratory birds or precocity of plants’ flowering 

season (Inouye et al. 2000; Fitter & Fitter 2002; Stefanescu et al. 2003). 

 

However, the main impact of climate changes is probably the shifts in species 

distribution these changes generate (Fig. 1). Climate is a major determinant of the natural 

distribution of species, with evidence both from both the fossil records (Escarguel et al. 

2011) and recently observed trends (Parmesan & Yohe 2003). 

 

 
Figure 1. Species ranges shift due to climate changes (Stephanie McMillan, 2011) 

  

Numerous empirical studies have already illustrated poleward shifts in distributions of 

species of a diverse range of taxa in response to climate modifications (e.g. Hughes 2000; 

Walther et al. 2002; Parmesan & Yohe 2003; Hickling et al. 2006). For example, in six 

studies on bird distributions reviewed by Pearce-Higgins et al. (2014), the leading edges 

of distributions shifted poleward by on average 0.76 km per year. In France, the 

populations of invasive pine processionary Thaumetopoea pityocampa spread over 87 km 

northward between 1970 and 2004 (Battisti et al. 2005). Both aquatic and terrestrial 

organisms are thus shifting their distributions to stay in suitable environmental conditions 

(Chen et al. 2011; Lenoir & Svenning 2015), probably more rapidly than they did in the 

past (Lawing et al. 2011). 
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1.2.2- Urbanization 

Urbanization, i.e. the process by which urban ecosystems are created (McIntyre et 

al. 2001), is a global change of high magnitude and speed which deeply impacts 

biodiversity (Grimm et al. 2008). With around 80% of the European population living in 

an urban area, urbanization shows a recent but explosive growth in most European 

countries (see Fig. 2 for an example) first affecting the main cities, but gradually 

urbanization processes affect smaller settlements and even remote rural villages (Antrop 

2004). Today, more than 50% of the global human population lives in urban settings. The 

expansion of cities is therefore a significant cause of the conversion of land to highly 

human-modified urban landscapes. 

 
Figure 2. Example of rapid urban sprawl in Faisalabad, Pakistan, between 1980 and 
2010 (extracted and shortened from Bhalli et al. 2012). 
 

Urban areas are novel ecosystems (Hobbs et al. 2006) characterized by a high 

density of built areas, impervious surfaces with strong heat-retaining abilities, elevated 

levels of some resources (Rebele 1994) as well as by changes on a broader scale, such as 

the creation of vast networks of transport infrastructure or the intensification of 

agricultural activities on their periphery (Niemelä 1999). Urban areas therefore appear as 

a mosaic of land uses, including residential, commercial, industrial and infrastructural, 

interspersed with green spaces (Breuste et al. 2008). Urbanization thereby converts 

natural and rural landscapes into profoundly modified habitats combining artificial 

surfaces, industrial pollution, anthropogenic disturbance, and strongly altered energy and 

nutrient cycles (Seress et al. 2014). it therefore affects all components of the environment, 

from soils and hydrology to vegetation and microclimates as well as the animals living in 

the cities (New 2015). For instance, cities are often warmer than nearby rural habitats, 
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with changes in the rate of warming from nighttime to maximum daytime temperatures 

and in the rate of warming across space being often higher in urban areas (Adams & Smith 

2014). 

 

From an ecological perspective, urbanization often has a negative impact on 

biodiversity. Cities are often located in naturally species-rich regions (Cincotta et al. 

2000; Luck 2007) with serious conservation challenges (McKinney 2002). Urbanization 

can result in a cascade of secondary effects on habitat quality, including increased 

fragmentation of the remaining habitat, increased exposure to habitat edge effects and the 

introduction of non-native species (Marshall & Shortle 2005).  

 

Most studies on urbanization have therefore focused on the response of organisms 

to pollution, disturbance, nutrient fluxes and landscape fragmentation, including a broad 

diversity of organisms such as vertebrates, insects, plants, fungi and micro-organisms 

(McDonnell & Hahs 2008). In addition, invasions of exotic species cause by human-

mediated biotic exchanges, and extinctions of indigenous native species due to habitat 

alteration and destruction may lead to a homogenized biota across the world’s cities. 

Although more rarely, urbanization can also have positive impacts on biodiversity. The 

various human influences in cities may create and maintain a variety of habitats that do 

not occur elsewhere (New 2015), supporting high species diversity, including threatened 

species (Niemelä 1999). Kark et al. (2007) identified traits in urban birds that enable 

species to dominate highly urbanized environments by becoming urban exploiters (i.e., 

species such as pigeons or rats that colonize highly urbanized environments using 

resources and shelters provided by humans; McKinney 2006), and suggested that 

ecological success in urbanized environments may depend on a combination of traits 

including diet, degree of sociality, sedentariness and preference in nesting sites.  
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Box 1: Ants in cities  
  

Among the fauna present in highly 

urbanized environments, ants 

(Formicidae) are good indicators of 

the environmental impact of 

urbanization (Philpott et al. 2010; 

Heterick et al. 2013). Several species 

of ants are common in cities (e.g., 

Tetramorium immigrans; Fig. 3) and 

are therefore included in studies of 

urban ecology (e.g., Pacheco & 

Vasconcelos 2007; Sanford et al. 

2009; Menke et al. 2011; Buczkowski 

& Richmond 2012; reviewed in Santos 

2016). Within ants, the magnitude and 

direction of urban impacts depend on 

the life history and sensitivity to 

disturbance of species, but also on 

species interactions and dispersal 

ability (Garden et al. 2006).  

 

Accordingly, almost all studies about impacts of urbanization on ant communities show 

differences in species composition in urban habitats compared to nearby natural areas 

(Philpott et al. 2010), suggesting that urbanization significantly alters ant species 

distributions. In addition, ants are easily transferred outside their native habitat through 

global scale human trade (McGlynn 1999a) and most studies published so far have shown 

dominance of species introduced by humans in cities (Heterick et al. 2013; Vonshak & 

Gordon 2015).  

  

Figure 3. Two illustrations of pavement ants 
Tetramorium immigrans (a) nesting in urban 
ecosystems and (b) eating human food 
resources. (c) Changes in Tetramorium 
immigrans diet across urban habitats. Box 
plots show stable isotope values of carbon 
(median, 25–75%, and range) for T. 
immigrans workers collected from parks, 
traffic islands and pavements. Extracted from 
Penick et al. (2015). 
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1.3- BIOLOGICAL INVASIONS 

1.3.1- The major issue of non-indigenous species 

Biological invasions are invasions by non-indigenous species introduced and 

maintained voluntarily or not outside their native range. Studies of biological invasions 

have grown exponentially for the last twenty years. Strictly speaking, invasions are 

neither novel nor exclusively human-driven phenomena. However, the geographical 

scope, the rate of recurrence, and the number of species involved have increased sharply 

subsequently to the development of transport and trade (di Castri 1989). The role of 

humans as dispersers of nonindigenous species could therefore have surpassed natural 

selection and dispersal, overcoming the natural stochastic forces and biotic resistance that 

would repel or remove introduced propagules (Ricciardi 2007).  

 

Biological invasions are a leading cause of conservation concern. Ecosystems and 

human society have been drastically altered by the proliferation of invasive species, 

especially in the current age of globalization (Perrings et al. 2005). In terms of its rate 

and geographical extent, its potential for synergistic disruption and the scope of its 

evolutionary consequences, this current mass invasion event is without precedent and 

could be considered as a unique form of global change (Ricciardi 2007). Non-indigenous 

species adversely affect native species through competition, predation, disease, 

hybridization, herbivory, parasitism, and alteration of disturbance regimes (reviewed in 

Gurevitch & Padilla 2004). The predation by brown tree snakes Boiga irregularis 

introduced in the island of Guam, on Saipan and in Indonesia have led to the decrease of 

population sizes of 12 bird species and 11 lizard species, and led to the extinction of 25 

birds species (Wiles et al. 2003). The competition between the introduced gray squirrel 

Sciurus carolinensis and the native Red squirrel Sciurus vulgaris in U.K. led to decrease 

drastically the distribution area of the red squirrel (Gurnell et al. 2004). Invasive ants 

(Box 2 hereafter) have been shown to impact many components of ecosystem 

functioning, ecosystem services and human societies, such as modifications of trophic 

web dynamics, alterations of nutrient cycling or decrease in pollination (reviewed in 

Bertelsmeier et al. 2015). Negative impacts from invasive non-indigenous species 

consequently include altering ecosystem functioning (e.g. Fig. 4, Wardle & Peltzer 2017), 
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declining population sizes of other species and causing local extinctions (Moles et al. 

2012; Pyšek et al. 2017).  

 

Positive effects are sometimes associated with the presence of non-indigenous 

species (Ewel & Putz 2004), such as the use of non-native predators to control herbivores 

(Bertness & Coverdale 2013) and presence of non-native plants extending total flower 

duration for pollinators (Salisbury et al. 2015). However, studies of biological invasions 

highlight many more negative than positive effects. The impacts of biological invasions 

are difficult to assess, especially because ecological consequences are modified over time 

(Strayer et al. 2017) and because their characterization strongly depends on human 

perception.  

 

 
Figure 4. Upper part of the Figure 1 in Wardle & Peltzer (2017) summarizing disruption 
of ecosystem functioning by aboveground invasive organisms in forest ecosystems, 
representing all major trophic groupings, and through a wide variety of mechanisms. 
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Box 2: invasive ants 

Social insects are among the most frequent and impactfull invasive animals. These 

insects live in colonies with numerous individuals, increasing their abilities to exploit 

resources and compete with local species and improving defenses capacities against 

predators (Moller 1996). Each colony produces many winged reproductives, rising 

dispersal abilities. These societies also favor flexibility in reproduction modes and 

dispersal as well as in their social structure, promoting biological invasions (Chapman & 

Bourke 2001 ; Holway et al. 2002 ; Abbott 2005). As an example, polygyny (i.e. colonies 

with several queens; Hölldobler & Wilson 1990) allows a faster dispersal, as the presence 

of many queens accelerate the growth of the colony (Vargo & Fletcher 1989) and increase 

the probability to introduce a group of individuals including reproductive females able to 

initiate new colonies (Hee et al. 2000). 

  

Among invasive social insects, ants represent the most widespread and destructive 

taxa (Tsuitsui et al. 2000; Reuther 2009). According to the Invasive Species Specialist 

Group (ISSG, IUCN) and Lowe et al. (2000), 5 of the 100 most damaging invasive 

species in the world are ants: the Argentine ant (Linepithema humile; Fig. 5a), the red fire 

ant (Solenopsis invicta; Fig. 5b), the bigheaded ant (Pheidole megacephala; Fig. 5c), the 

little fire ant (Wasmannia auropunctata), and the yellow crazy ant (Anoplolepis 

gracilipes). Ant invasions cause significant economic costs, alter the environment and 

impact native biodiversity (Holway et al. 2002). Through competitive dominance, 

predation and nest raiding, native ant diversity can be significantly reduced (Human & 

Gordon 1997). 

 

(following next page) 
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Box 2: invasive ants (following)  

 
Figure 5. (a-c) Three of the main invasive species of ants (a: Argentine ant; b: Fire ant; 
c: Bigheaded ant). (d) Spread of the fire ants between 1939 and 1995; extracted from 
Callcott & Collins (1996). 
 

Highly invasive ants are often unicolonial, like Argentine ants (Linepithema 

humile) forming supercolonies in which workers and queens mix freely among physically 

separate nests, reducing costs associated with territoriality, and leading to high worker 

densities (Tsuitsui et al. 2000). The red fire ant Solenopsis invicta is also a significant 

pest that was inadvertently introduced into the southern United States almost a century 

ago and more recently into North-America and other regions of the world (Fig. 5d). It is 

either monogynous or polygynous in North-America, with sometime more than 200 

queens per colony (Ross & Keller 1995). Ascunce et al. (2011) showed that at least 9 

separate introductions of S. invicta have occurred into newly invaded areas (e.g. Taïwan 

or Australia), whose main source was the main southern U.S. population. 

 
There are many other species of invasive ants, and probably more will be observed 

in the coming decades in response to increasing global changes. For example, in France, 

8 of the 14 invasive ant species investigated by Bertelsmeier and Courchamp (2014) were 

predicted to increase their potential range in response to climate change.  
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1.3.2- Invasion stages and evolutionary processes 

 

Invasion pathway can be described as a series of distinct stages, and the transition 

between any two stages is hindered by specific barriers and can be linked to evolutionary 

changes (Blackburn et al. 2011; Bertelsmeier et al. 2015; Zenni et al. 2017; Fig. 6).  

 

 
Figure 6. The simplified unified framework for biological invasions (Blackburn et 
al. 2011) expanded to incorporate the main evolutionary mechanisms associated with 
invasions (adapted from Zenni et al. 2017 and Bertelsmeier et al. 2015). The proposed 
framework recognizes that species are referred to by different terms depending on where 
they have reached in the invasion process, that the invasion process can be divided into a 
series of stages, and that in each stage barriers need to be overcome for a species or 
population to pass on to the next stage (Blackburn et al. 2011). The blue arrows describe 
the movement of species along the invasion framework with respect to the barriers. 
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First, individuals or propagules must be anthropogenically transported from one 

location to another, overcoming natural geographical barriers (transport stage in Fig. 6). 

In the event these individuals or propagules introduced outside their native range survive 

transport, they must then survive in a novel, exotic location, under the environmental 

conditions of the recipient area (introduction stage in Fig. 6). This stage can induce a 

founder effect, i.e., a decrease in genetic diversity within the introduction area (Allendorf 

& Lundquist 2003), because the genetic pool of the transported individuals only represent 

a small sample of the whole genetic variability inside the native area.  

After colonization, populations have to be able to reproduce and to achieve a 

positive growth rate in order to become truly established in the new environment without 

new exogenous propagules or individuals incoming (establishment stage in Fig. 6). At 

this stage, selection of exapted genotypes inside the genetic pool and establishment of 

new genetic lineages can occur as a result of crossing between genotypes previously 

isolated in the native area. This stage can be followed by a lag phase with a very low 

population density (Williamson 1996), except for some species capable of fast adaptation 

or with a high plasticity (Fordyce 2006).  

The last stage leading to invasion is population growth (spread stage in Fig. 6). 

Populations have to overcome interspecific interactions and other barrier linked to 

environmental conditions and be able to spread across the landscape. This spread can 

generate new founder effects, induce selections of exapted genotypes, genetic 

recombinations due to inbreeding and adaptation, and hybridization or introgression with 

local species (Ellstrand & Schierenbeck 2000, Suehs et al. 2004, Tiébré et al. 2007). 

Finally, the generation of impacts (e.g., altering ecosystem functioning or declining 

population sizes of other species) can constitute the last stage of invasion (Bertelsmeier 

et al. 2015; Impact stage in Fig. 6; see previous section for details).  
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1.3.3- How species become invasive ?  

All introduced species do not become invasive (Fig. 6). Previous studies showed 

that only 10% of exotic populations successfully proceeded to the following invasion 

stage (e.g. for flatworms and marine organisms in Boag & Yeates 2001; Williamson 

1996), although this success rate could be higher for exotic ant species (Suarez et al. 

2005). Ecological, demographical and genetic factors simultaneously determine the 

success of the invasion. Some factors in the success of the invasion are thus not linked to 

the traits of the transported organisms (Box 3); for example environments with few 

predators or competitors favor the spread of species in a novel environment (“Enemy 

Release Hypothesis”, Keane & Crowley 2002, but see Colautti et al. 2004), and high 

propagule pressures (i.e. the number of individuals introduced and the number of 

introduction attempts) increase chances of establishment (Simberloff 2009).  

 

Significant differences in success between species also suggest that in addition to 

these environmental factors, multiple traits of the introduced species may influence 

species’ invasion success. These traits can be expressed in the native population before 

transportation in the novel environment or can be developed after the introduction in 

response to evolutionary processes such as genetic drift resulting from bottlenecks 

(Tsutsui et al. 2000) or new selection pressures (Giraud et al. 2002). Blackburn et al.’s 

(2009) results suggested a likely influence of some species-level traits on exotic bird 

establishment success, e.g., success seemed greater for species with large body mass. In 

social insects and especially ants, many species-level traits have been found that help 

species to become invaders, such as nesting and feeding habits (Holway et al. 2002), 

small sizes (McGlynn 1999b), unicoloniality and reproduction by budding (Tsutsui & 

Suarez 2003) (reviewed in Reuther 2009; see box 2 for details).  
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Box 3: Urbanization promotes biological invasions 

Urban environments are often seen as unique or degraded habitats that present 

hardships for some species. Many native species are sensitive to anthropogenic 

disturbances. For these species, urbanization leads to the destruction of favorable habitats 

(Didham et al. 2007). However, these ecosystems can also provide opportunities for other 

species. Marzluff (2001) evidenced an upward trend in the proportion of non-native 

species (i.e., species that did not occur before importation by humans) toward the urban 

core. Numerous studies have further shown that the construction and expansion of cities 

promote the loss of native species and their replacement by non-native species 

(McKinney 2006). Recently, Cadotte et al. (2017) showed that non-native species obtain 

higher abundances and greater diversity in more urbanized habitats, especially 

invertebrates.  

Three factors may explain the increase in non-native species richness: (i) an 

increased rate of importation of non-native individuals, e.g., due to accidental or 

intentional transport (Mack et al. 2000; McKinney 2006); (ii) the presence of habitats 

favorable to the establishment of non-native species, according to the “niche opportunity” 

concept (Shea & Chesson 2002) where favorable combination of resources, natural 

enemies and physical environmental conditions, including their fluctuations in time and 

space, improve the invader’s habitability (McKinney 2006); and (iii) the fact that non-

indigenous species include species that can tolerate the unique conditions or capitalize on 

the opportunities found in urban environments (Cadotte et al. 2017).  

McKinney (2006) also documented numerous examples of urban impacts on 

biological communities considering all three factors providing niche opportunities for 

non-native species: (i) by increasing food resources provided by humans (e.g., increasing 

densities of house mice Mus musculus and feral house cats Felis catus); (ii) by reducing 

or eliminating natural enemies (e.g., increasing densities of raccoons after the elimination 

of large carnivores in the USA); or (iii) by human alteration of the environment which 

can generate physical conditions detrimental to native species but favoring non-native 

species. Moreover, these urban beneficiaries may be those that normally cannot overcome 

competitive interactions in intact native communities but find the opportunity to flourish 

in urban habitats (Cadotte et al. 2017).   
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1.4- GENETIC EXCHANGES BETWEEN SPECIES 

1.4.1- From gene flow to interspecific hybridization 

Gene flow involves the movement of genes into or out of a population, due to the 

movement of either the whole individual organisms or genome (eggs and sperm, e.g., 

through pollen dispersal by a plant) from one population to another (Fig. 7). After entering 

a new population, immigrant genomes may become incorporated by sexual reproduction, 

and then be gradually broken up by recombination (Mallet 2001), adding new alleles or 

modifying alleles frequency in the population. Gene flow can therefore be a strong agent 

of evolution. 

Figure 7. Illustration of limited gene flow between two population of ants isolated by a 
geographical barrier. 
 

Gene flow can take place between two populations of the same species through 

migration (Fig. 7) and is mediated by reproduction and vertical gene transfer from parent 

to offspring. Alternatively, genetic exchanges can take place between two distinct species 

through horizontal gene transfer (Keeling & Palmer 2008), or through vertical gene transfer 

via interspecific hybridization and introgression (Anderson 1953). During the last decades, 

the use of genetic techniques and the study of hybrid zones showed that hybridization and 

introgression are common phenomena in animal evolution (Dowling & Secor 1997). 

Hybridization, i.e., reproductive interactions between individuals whose lineages show 

some degree of evolutionary divergence, and introgression, i.e. the durable integration of 

genes acquired through hybridization, have been demonstrated to be relatively common 

(Mallet 2007; Mallet et al. 2016; Larsen et al. 2010; Brennan et al. 2015), and shape species 

through substantial interspecific gene flow (Arnold & Kunte 2017).  



Chapter 1. GENERAL INTRODUCTION 

 

 
17 

1.4.2- What initiate interspecific hybridization? 

Interspecific hybridization is a common natural phenomenon; it is estimated that 

as many as 25% of plant species and 10% of animal species hybridize naturally (Mallet 

2007). Hybridization is nevertheless thought to be rare in nature between sympatric 

species, as implicitly suggested by many definitions of species (Mallet et al. 2008). Most 

of the time, hybridization therefore happens between previously allopatric species which 

have moved and met. Natural hybridization during these secondary contacts are, for a 

large part, related to movements driven by the last glacial periods, which gathered many 

species in refuges in Spain, Italy, and the Balkans (e.g., Ferrero et al. 2011; see also the 

section about the Rhône-Saône valley hereafter).  

 

During the past decades, the role of hybridization in the extinction of species 

has been particularly investigated given that the impact of humans on their 

environment (fragmentation, species introductions, climate change) has created new 

opportunities for hybridization and, in some cases, led to the increase in frequency of 

the phenomenon where it already existed (Todesco et al. 2016). For the British Isles, a 

recent overview has already demonstrated a rise in the number of hybrids during the last 

few decades (Stace et al. 2015). Becker et al. (2013) showed that, consequently to 

climate-induced range shifts, sympatry between previously isolated species increased, 

potentially resulting in introgressive hybridization. Indeed, as some populations and 

species have spread under favourable climatic conditions, new contact zones arose 

between related lineages, leading to interspecific competition but also an increased 

likelihood of hybridization between taxa (Garroway et al. 2010).  

 

Climate-induced expansions of introgression have been predicted for many 

terrestrial and aquatic species, especially species that are sensitive to temperature and 

streamflow conditions (Walther et al. 2002), including insects (Sánchez‐Guillén et al. 

2016). Climate change could therefore decrease worldwide biodiversity through 

invasive hybridization (Hoffmann & Sgro 2011). Nonetheless climate is not the sole 

cause of hybridization. Anthropogenic hybridization can result directly from human 

action, e.g. when hybridization is induced by the release of exotic individuals (e.g., Casas 

et al. 2016 for the partridge Alectoris spp.). As species are transported around the world 
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with increasing intensity, barriers to gene flow between formerly geographically 

separated species are reduced and new hybrids between introduced and indigenous 

species are likely to emerge more frequently (Thomas 2013). Furthermore, biological 

introductions concomitant with urbanization (Cristescu 2015) could promote the 

establishment of contact zones between species capable of genetic exchanges because 

of the lack of pre-zygotic, geographical or ecological reproductive barriers, as shown 

by Crispo et al.’s (2011) illustration of the consequences of anthropogenic changes on 

numerous taxa.  

 

Anthropogenic hybridization can also occur indirectly, as a result of the changes 

caused by human activities on their environment. For instance, human activities may 

impact physico-chemical properties of the environment. In Lake Victoria, the increase in 

water turbidity promoted hybridization between cichlid fish (Haplochromis spp) by 

making it impossible to recognize conspecifics because mate choice was based on 

coloration (Seehausen 1997). Urbanized areas have a greater heterogeneity than 

“natural” environments, creating ecotones acting as new areas of contact between 

species with widely differing ecological preferences (Brennan et al. 2015). Human 

activities are thus paradoxically likely to both reduce and enhance genetic exchanges, 

on the one hand by erecting new barriers, and on the other hand by bringing together 

previously distant species. Urbanization and human activities might therefore act as 

major qualitative and quantitative promoter of hybridization processes. 
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1.4.3- Long-term evolutionary consequences of hybridization and introgression 

When reproductive barriers between species are insufficient, and hybridization 

occurs, then the outcome of hybridization (Fig. 8) can span from complete species 

isolation to complete admixture. The position along this continuum is determined by a 

combination of intrinsic genetic factors that are determined by the extent of genetic 

incompatibilities and extrinsic factors related to the hybrid phenotype (Sánchez‐Guillén 

et al. 2016).  

 

Several authors identified two types of models explaining how stable hybrid zones 

are maintained (Nielsen et al. 2003; Buggs 2007; Fig. 8a). When hybrids show a higher 

fitness than parental taxa, a hybrid zone remains stable provided that the hybrid's fitness 

is bounded to an ‘ecotonal’ zone corresponding to an intermediate environment to that 

occupied by the parental taxa (bounded hybrid superiority model; Moore 1977). When 

hybrids are of lower fitness than parents, a stable cline is primarily maintained by 

selection against intermediate genotypes. In this case, the low fitness of hybrids causes 

spatial mixing of the parental taxa to be minimized, leading to narrow, straight hybrid 

zones, usually termed ‘tension zones’ (dispersal/selection models; Barton & Hewitt 

1985). In some situations, it may lead alleles and associated phenotypes to cross species 

boundaries and provide individuals of the recipient species with an adaptive advantage 

(adaptative introgression in Fig. 8; Hedrick 2013; see Whitney et al. 2015 or Pardo-Diaz 

et al. 2012 for examples).  
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Figure 8. Different outcomes of hybridization. Boxes represent spatial outcomes, with 
small circles corresponding to individuals belonging to parental species (blue and yellow) 
or hybrids (green), and grey area characterizing the hybrid zone. Large ovales represent 
genetic populations, i.e. pool of individuals with the same genotype (adapted from 
Grabenstein & Taylor 2018). Blue and yellow ovales are parental populations, green areas 
of overlapping ovales represent populations with hybrid individuals of mixed ancestry 
and green ovales represent new species resulting of hybridization processes. Yellow stars 
represent alleles from the yellow genetic pool. Small dotted black arrows denote 
introgressed alleles. The thick vertical arrow indicates the process that initiated 
hybridization. Although the outcomes are depicted as a unidirectional flow chart, these 
outcomes are not necessarily permanent, and populations can fluctuate between outcomes 
over longer evolutionary timescales.  
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Hybrid zones can also disappear progressively through reinforcement (Fig. 8b). 

In this situation, hybrids initially formed have a lower fitness than either parent alone, 

leading over time to complete species isolation (Barton & Hewitt 1985; see Redenbach 

& Taylor 2003 for example). However, hybridization can also play a creative role in 

evolution through several processes, such as hybrid swarming or hybrid speciation. 

Hybrids can be just have the same fitness than either parent alone, and over time 

differences in parental species should weaken and hybrid populations enlarge (Fig. 8c). 

As a result, hybridization sometimes leads to the displacement or extinction of one or 

both parental taxa (Ellstrand & Elam 1993) and their replacement by a complete 

admixture called “hybrid swarms” (“Genetic extinction” in Fig. 8; Gilman & Behm 

2011; Mallet 2007; see Ording et al. 2010 for an example). Hybridization can also lead 

to the fusion of previously divergent taxa which collapse into a single (“Speciation 

reversal” in Fig. 8; Seehausen et al. 2008).   

Finally, hybrid speciation may result in a stable, fertile and reproductively isolated 

hybrid lineage (Arnold 2006; Mallet 2007; Abbott et al. 2013; Thomas 2015; Fig. 8d). 

This speciation process is considered rare in animals but has been reported in several 

occasions (e.g., Larsen et al. 2010; vonHoldt et al. 2011; Barrera-Guzmán et al. 2017). 

For instance, vonHoldt et al. (2011) showed that in North Carolina, endemic species of 

wolves may actually be the descendants of hybrids resulting from the reproduction of 

coyotes (Canis latrans) and gray wolves (Canis lupus).  

 

1.4.4- Microsatellites markers and mitochondrial DNA to study hybridization 

Over the last decades, several key advances in molecular genetics have greatly 

increased the impact of population genetics on biology, including the development of 

polymerase chain reaction (PCR) amplifying specified stretches of DNA to useable 

concentrations, and the advent of hypervariable microsatellite loci and routine DNA 

sequencing in biology laboratories (Sunnucks 2000). The development of genetic markers 

within mitochondrial DNA (mtDNA) and nuclear microsatellites have provided the 

potential to measure levels of gene flow and population structure (Petit & Excoffier 2009; 

Hermansen et al. 2011; André et al. 2011; Toews & Brelsford 2012; Lessios & Baums 

2017).  
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Nuclear microsatellites makers 

Microsatellites are DNA sequences present in high frequency in the nuclear 

genome of eukaryotes (Tóth et al. 2000).  They correspond to repeats of 2 to 6 nucleotides 

DNA patterns (Fig. 9). The alleles of a microsatellite, which result from a high mutation 

rate (10-6 to 10-2 / locus & generation; Schlötterer 2000) due to slippage and errors during 

replication, correspond to different numbers of repeats (classically 5 to 40 repeats; Estoup 

& Angers 1998; Selkoe & Toonen 2006). The lengths of fragments are therefore highly 

polymorphic.  

 

Microsatellites have become increasingly widespread along the last decades, 

notably because of their high polymorphism, but also because they are expected to be 

neutral with a Mendelian inheritance. Microsatellites are relatively easy to obtain, as the 

flanking regions surrounding the microsatellite (in black in Fig. 9) can be widely 

conserved across species, thus allowing the use of the same markers to study several 

species (Barbará et al. 2007). These markers are extremely abundant in most organisms 

(Estoup & Angers 1998; Tóth et al. 2000). They have been widely used to answer many 

different issues, e.g., to estimate genetic diversity (Garner et al. 2003) or population size 

(Rowe & Beebee 2004), to detect bottlenecks (Beebee & Rowe 2001), to estimate 

relatedness between individuals or populations (Janečka et al. 2007), or to detect hybrids 

(Oliveira et al. 2008; Godinho et al. 2011). However, mutation schemes of microsatellites 

are complex (Ellegren 2004), and the same allele may result from several evolutionary 

trajectories due to homoplasic processes (Selkoe & Toonen 2006). In addition, as 

microsatellite markers are species-specific, several microsatellite loci are needed to 

perform representative analyses and because these analyses are difficult to automate 

(Schlötterer 2004; Guichoux et al. 2011), the use of a large number of markers is time-

consuming.  
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Figure 9. Representation of the different steps of genotyping of a microsatellite locus of 
a diploid individual. In this example, the microsatellite is a dinucleotide, i.e. the repeated 
motif counts two base pairs (TA). I illustrate here the case of a heterozygote individual, 
i.e., an individual with two distinct alleles for a locus. (1) DNA extraction; (2) PCR 
amplification; (3) Computer-based analyses; (4) Genotype identification. 
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Mitochondrial markers 

In many studies, nuclear markers are combined with mitochondrial DNA, and 

these last decades, numerous studies about population histories were based on 

mitochondrial markers.  

Mitochondrial DNA is circular, without introns 

in coding sequences and is not inherited 

according to Mendelian rules but transmitted 

uniparentally without recombination, typically 

inherited maternally (Fig. 10; Dawid & 

Blackler 1972). Mitochondrial DNA is 

expected to evolve faster than the nuclear 

genome (mutation rate 5 to 10 times higher; 

Hewitt 2001), enhancing the  growth of genetic 

variability within and between populations 

over evolutionary times, and thus quickly 

became diagnostic of taxa (Sunnuck 2000). 

 

 

 All these characteristics make mitochondrial DNA highly popular to study 

population variability (Wahbe et al. 2005) or biogeography (Stöck et al. 2006), but also 

in hybridization studies, in complement to nuclear markers, as it provides important data 

about the direction of crosses in hybrid individuals (Avise & Saunders 1984). Recurrent 

backcrossing of hybrid females with males from their paternal lineage will also ultimately 

lead to offsprings with introgressed mitochondria, i.e., mtDNA from the maternal lineage 

and nuclear DNA from the paternal lineage (Darras & Aron 2015). According to the 

review of Toews & Brelsford (2012), when foreign mtDNA haplotypes are found deep 

within the distribution range of a second taxon, those mtDNA haplotypes are more likely 

to be at a high frequency and are commonly driven by sex-biased asymmetries or adaptive 

introgression. Combining microsatellite markers and mtDNA could therefore help 

improving discrimination between situations with hybridization and situations with 

introgression. 

Figure 10. Nuclear DNA is inherited 
from all ancestors, whereas 
mitochondrial DNA is inherited 
maternally. 
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1.5- SPECIFICITIES OF ANT MODELS: THE CASE OF THE TETRAMORIUM 

GENUS 

1.5.1- Why study ants? 

Social insects mainly belong to two taxonomical groups,  Hymenoptera and 

Isoptera, and are characterized by a higher level of sociality called eusociality, defined by 

generations overlap, cooperating broad care and specialization of individuals in 

reproduction through reproductive vs. sterile castes (Wilson 1971). Ants are an ideal 

model system for ecology and evolution (Lach et al. 2010). More than 15,000 species and 

subspecies of ants have been described on all continents and many other probably remain 

to be discovered (Guénard et al. 2017). Overall, their biomass is expected to account for 

15% of total terrestrial biomass in some ecosystems (Schultz 2000). Because of these 

high abundance and species diversity, ants are particularly suited for monitoring studies. 

Ants are dominant in many ecosystems and are consequently keystone species due to their 

influence on many ecosystem functions (e.g., seed dispersal or soil chemistry; Folgarait 

1998). They have colonized almost all terrestrial habitats, including tropical forests, 

desserts, savannah, urban areas or agricultural landscapes (Hölldobler & Wilson 1990). 

Due to their broad variety of their lifestyles, ants are increasingly being recognized as 

useful tools for monitoring ecosystem health (Underwood & Fisher 2006). For example, 

some species are nomads, others nest in trees, soil, or leaflitter, others construct large 

anthills; their diet ranges from predators to seed harvesters, including scavengers, 

exploiters of sugary exudates, omnivores and even fungus growers (Lach et al. 2010).  
 

As ants are easily transported by humans because of their small sizes and nesting 

habits, over 200 species have established populations outside their native range (Lach et 

al. 2010) but it has been estimated that more than 600 ant species have already been 

introduced outside of their native range (Miravete 2014; Box 2). A small subset has 

become invasive, i.e. their establishment has been followed by a subsequent proliferation 

and expansion, leading to negative impacts on native biodiversity and/or human health 

(Holway et al. 2002; Lach et al. 2010; see section about biological invasions and 

especially Box 2).  
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As ectothermic insects, larval development and adult activities of ants are highly 

sensitive to climatic conditions, making their distributions strongly affected by climate 

(Sanders et al. 2007; Jenkins et al. 2011). Ants are therefore useful models for 

understanding responses to temperature variation and climate changes (Harkness & 

Wehner 1977; Andrew et al. 2013). Ants are also a suitable model to study urbanization 

(Box 1), with several ant species common in cities (reviewed in Santos 2016) and several 

others sensitive to urbanization (Philpott et al. 2010). Furthermore, ants are a suitable 

model to study genetic exchange between species, as Formicidae seem particularly 

predisposed to hybridization (reviewed in Feldhaar et al. 2008; e.g., Kulmuni et al. 2010; 

Purcell et al. 2016; Ueda et al. 2015). These hybridization events could be partly 

promoted by the haplodiploid reproductive system of ants (and other Hymenoptera) 

where haploid males produced by unfertilized eggs only inherit maternal genetic material, 

mitigating outbreeding depression compared to other organisms, as male fitness is 

preserved (Feldhaar et al. 2008; Kulmuni et al. 2010; more details hereafter). Being able 

to breed with a male of another species also increases the probability of successfully 

meeting one or more partner(s) and could thus even prove reproductively advantageous 

(Rosenthal 2013). 

 

1.5.2- Key elements of ant biology  

According to Lach et al. (2010), the ecological success of ants can be attributed 

to the benefits of division of labor and morphological specialization among adults. 

Functional differences between queens and workers are amplified by morphological 

differences: winged queens start new colonies and produce offspring, whereas non-

winged sterile workers raise the brood, build the nest and forage for food. Passera and 

Aaron (2005) suggested that chemical communication also plays a key role in the 

evolution of social organization and is an essential driver of the ecological success of 

ants. In this section, I briefly review these aspects and highlight the main biological 

characteristics of ants.  
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Colony life histories, haplodiploidy and the minefield of mating systems 

Hölldobler and Wilson (1990) and Lach et al. (2010) reviewed the incredible 

diversity in life histories and mating patterns in ants. All ants live in perennial colonies 

that exhibit three phases: foundation (initiation of new colonies), growth (production of 

workers), and reproduction (production of sexuals). Because a broad variety of life cycles 

exists in ants, I have chosen to only detail the most classical situation (Fig. 11).  

 
Figure 11. Stages of the life cycle of a monogynous (one queen is the mother of all 
offspring of the colony) monandrous (only one male mated per queen) colony. 1- 
Generations of workers raise the brood and take care of the queen. 2- Queen fertilizes 
eggs to produce females (sexual reproduction) or produces males with unfertilized eggs 
(arrhenotokous parthenogenesis). 3- The brood grows. 4- Adults emerge. 5- Gynes and 
males leave the colony for the nuptial flight. 6- Gynes and males copulate. 7- Males die. 
8- Female wings are dropped, and the new queen found a nest. 9- The colony grows with 
many generations of workers during several years before producing winged individuals 
able to reproduce.  
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In this system, young winged queens and males are reared once a year (stages 2-

4 in Fig. 11). Following a change in weather conditions (e.g. temperature, humidity), 

gynes and males exit the nests synchronously for the nuptial flight (stage 5 in Fig. 11) and 

copulate (stage 6 in Fig. 11). Males die (stage 7 in Fig. 11) and only their genes “survive”, 

sometimes for decades, as sperm stored in a queen's spermatheca. Queens work alone for 

several weeks up to a few months, feeding and caring for the brood until these become 

adult workers (independent colony foundation stage; stage 8 in Fig. 11). Colonies of most 

species must grow to a large size before producing individuals being able to reproduce, 

which may take several years (stage 9 in Fig. 11). Because of ants’ life cycle, the queen 

of a colony only copulates during her brief mating period and never mates again.  

 

In ants, sexual determination is haplodiploid (Fig. 12). Females are produced 

through sexual reproduction (stage 2 in Fig. I. 11) after egg fertilization with sperm stored 

in the spermatheca (Fig. 12). Unfertilized eggs develop into males through arrhenotokous 

parthenogenesis (stage 2 in Fig. 11). These males are haploid and only contain genetic 

material (both nuclear and mitochondrial DNA) of maternal inheritance. Consequently, 

in a monogynous monandrous system (i.e., one queen mating with one male and being 

the mother of all the offspring of the colony), all workers inherit their father’s complete 

nuclear DNA (corresponding to 50% of their own nuclear genome) and 50% of their 

mother’s nuclear DNA (corresponding to 50% of their own nuclear genome), but their 

whole mitochondrial DNA is maternally inherited (Fig. 12). 
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Figure 12. Adaptation of Fig. 10 for the haplodiploid system of ants in a monogynous 
monandrous mating system. Males and females have wings whereas worker are wingless 
individuals. Mitochondria color indicate mtDNA haplotypes and nuclear color indicate 
nuclear DNA allele(s) for a locus. The green area corresponds to mitochondrial 
inheritance whereas the blue area corresponds to nuclear inheritance.  

 

Although ant colonies are classically headed by a single queen mated to a single 

male (Figs. 11 and 12), their actual kin structure can be more complex. Colonies of many 

ant species have multiple queens (polygyny; Hölldobler & Wilson 1977). In addition, in 

some species, queens mate with multiple males (polyandry; Hardy et al. 2008). Polygyny 

and polyandry both have costs (Hughes et al. 2008). Polygyny requires a queen to share 

her colony’s reproductive output with other queens. Polyandry involves energy 

expenditure and increased risks of predation, parasitism and damage by male partners. 

However, Hughes et al. (2008) suggested that fitness benefits resulting from increased 

intracolonial genetic diversity have played a significant role in the evolution of polyandry 

and possibly polygyny in ants (Fraser et al. 2000). Because of the important effect of 

these multiple mating on the relatedness among offspring and the genetic diversity of 

colonies, the study of the variation in mating frequency in ants is a crucial issue, which 

has received much attention in the last decades (e.g. Strassmann 2001; Baer & Boomsma 

2004; Kellner et al. 2007).  
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Communication and chemical signal 

Understanding communication processes within ants has advanced significantly 

during the last decades (Liebig 2010; Ozaki & Hefetz 2014; Sturgis & Gordon 2012). 

Most of the interactions among ants are based on the exchange of olfactory information 

involving compounds constitutive of the cuticle of individuals or actively produced by 

various exocrine glands present mainly on the legs, thorax and head (Blomquist & 

Bagnères 2010). Chemical cues are detected by the peripheral nervous system (i.e. the 

antenna) and relayed towards the higher nerve centers. In social Hymenoptera, a 

particular class of chemical compounds is involved in the regulation of social interactions: 

cuticular hydrocarbons (CHCs; Blomquist & Bagnères 2010). Primarily acting as a 

barrier against desiccation and pathogens, CHCs serve in ants at least as signature 

mixtures and pheromones at various levels (individual, within colony, between colonies; 

d’Ettorre et al. 2017). CHCs are stored in the post-pharyngeal gland and exchanged 

between members of the colony by trophallaxis, allogrooming, and physical contact 

(Lenoir et al. 2001; Chapuisat et al. 2005). The resulting chemical mix typically includes 

alkanes, alkenes and methyl branched alkanes (Martin & Drijfhout 2009) which 

contribute to the creation of a colony-specific odor template (Frizzi et al. 2015).  
 

Within species, different colonies usually have the same blend of CHCs but differ in 

their relative concentrations (van Wilgenburg et al. 2006; Foitzik et al. 2007; Brandt et 

al. 2009). Workers inspect the hydrocarbon profiles of other workers with their antennae 

and are thought to discriminate according to the degree to which it overlaps their own 

template (Suarez et al. 2002; van Zweden et al. 2009). Colony mates are usually ignored, 

whereas other hetero‐ and conspecifics typically elicit an aggressive response (Fadamiro 

et al. 2009; Menzel et al. 2009). Such mechanisms thus allow recognizing nestmate and 

limiting aggressiveness between nestmates, which is crucial in regulating colony 

cohesion and interactions with other colonies.  
 

The CHCs chemical mix can be modified by the environment, including diet, 

pollution, construction materials of the nest, microorganisms associated with the colonies, 

or physical contacts among individuals (Sorvari & Eeva 2010; Chen & Nonacs 2000; 

Liang & Silverman 2000). Environmental factors therefore play a key-role in inter-

individual recognition and can alter behavior, specifically generating increases or 

decreases in aggression towards interacting individuals (Frizzi et al. 2015).  
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1.5.3- Tetramorium ant species in France 

Tetramorium is a ubiquitous genus of small generalist ants including several 

important invasive pests such as T. bicarinatum (Nylander, 1846) (Garcia & Fisher 2012), 

T. immigrans Santschi, 1927 (Wagner et al. 2017) and T. tsushimae Emery, 1925 (Steiner 

et al. 2010). Twelve Tetramorium species have been recorded in France, including T. 

semilaeve André, 1883, T. meridionale Emery, 1870, two species of the T. chefketi 

complex (T. forte Forel, 1904, T. moravicum Kratochvil, 1941), and five species of the T. 

caespitum complex: T. impurum (Foerster, 1850), T. alpestre Steiner, Schlick-Steiner & 

Seifert, 2010, T. immigrans, T. indocile Santschi, 1927, and T. caespitum (Linnaeus, 

1758) (Schlick-Steiner et al. 2005, 2006; Guesten et al. 2006; Steiner et al. 2010; Csösz 

et al. 2014; Borowiec et al. 2015; Wagner et al. 2017). Morphological identification can 

be used to discriminate among Tetramorium species (e.g. Guesten et al. 2006; Borowiec 

et al. 2015; Wagner et al. 2017), but difficulties arise within the T. caespitum complex 

where species appear very similar in color and form (Schlick-Steiner et al. 2006; Wagner 

et al. 2017). As a consequence, it is necessary to use genetic methods to securely identify 

Tetramorium species in France.  

 

In comparison to, and probably because of the systematic work on these 

Tetramorium ants (e.g. Schlick-Steiner et al. 2006; Wagner et al. 2017), comparatively 

little has been done so far to study the biology, life history and ecology of these species, 

especially in recent times. As the present PhD work is strongly focused on the cryptic 

species T. immigrans and T. caespitum, I briefly review below the relevant previous 

studies on these taxa. To my knowledge, nothing is known about the fine-scale 

distributions of these species in France, even if they are known to differ in thermal 

specificity. Wagner et al. (2017) indicate that the thermal niche of T. caespitum 

corresponds to an average standard air temperature of 16.1°C vs. 19.9°C for T. immigrans. 

Brian et al. 1967 used mark-recapture techniques to estimate colony size of T. caespitum 

in England, and the 22 colonies studied averaged populations of 14 448 ± 1440 with 

territories found to average at 43 ± 4 m2. Gippet et al. (2017) investigated urbanization 

impacts on T. immigrans and T. caespitum presence, concluding that T. immigrans 

(formerly called T. sp. E; Wagner et al. 2017) occurred in fragmented and warmer areas, 

contrary to T. caespitum (formerly called T. sp. U2; Wagner et al. 2017), but this study 
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not detect any urbanization effect on these taxa, focused on a single urban area and did 

not investigate how land-cover and scale explained their spatial distribution. Tetramorium 

immigrans and T. caespitum are monogynous, but to my knowledge, mating systems have 

never been investigated in these species. Hybridization is suspected between T. 

immigrans and T. caespitum, based on mitochondrial-nuclear discordance found in two 

individuals with a T. immigrans mtDNA and which clustered with T. caespitum for 

Amplified Fragment-Length Polymorphism (Wagner et al. 2017). However, this 

hybridization has not been further investigated to date. Recognition cues through 

chemical signals or aggression behavior have also been little studied in these species. 

Schlick-Steiner et al. (2006) showed that the chemical signal of T. caespitum differs from 

T. immigrans but did not identify which chemical compounds were implicated in these 

differences. Sano et al. (2018) combined behavioural tests and cuticular hydrocarbons 

assessments to investigate the use of these compounds in recognition of conspecifics vs. 

heterospecifics in a Tetramorium species from the USA and called T. caespitum in their 

paper. However, according to its geographical location, it is likely T. immigrans, as T. 

caespitum only occurs in Europe according to the literature, and because T. immigrans 

and T. tsushimae are the only pavement ants described so far from North America and T. 

tsushimae is morphologically distinguishable (Schlick-Steiner et al. 2006, Steiner et al. 

2006, Wagner et al. 2017, Steiner et al. 2008). According to Sano et al. (2018), T. 

immigrans (?) responded with same levels of aggression to conspecific and heterospecific 

non-nestmates. They therefore suggested that T. immigrans (?) workers simply excluded 

all non-nestmate ants regardless of their species membership.  

 

Tetramorium immigrans is particularly worth studying because it is an invasive 

species in North America, where it was introduced in cities in the 19th century or earlier 

(Steiner et al. 2006, 2008). It has also been found in South-America, notably in Valparaiso 

(Chile) from where the current lectotype originates (Wagner et al. 2017). Wheeler (1927) 

was the first to discuss the occurrence of pavement ants in North America and its possible 

routes of introduction into the Continent from Europe. Wheeler speculated that they came 

over during the colonial era (1748), but the reason why this spread in the United States 

was so slow until 1924 is still not understood.  
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To conclude, it must be noted that many issues have been neglected in these 

species, especially regarding their ecology. In the current context of ecological research, 

it is somewhat surprising that so little is known on such widespread and ecologically 

important species. The recent taxonomical revision of these species calls into question 

most of the previous findings, making crucial to bridge the gaps in the understanding of 

the ecology of these taxa. 

 

1.6- THE RHÔNE - SAÔNE VALLEY: AN OPEN-AIR LABORATORY TO 

ASSESS GLOBAL CHANGES 

The valley of the middle and lower Rhône River and of the Saône River occupy a 

central place in the “Grand Sud-Est”, France, formed by the administrative regions of 

Auvergne-Rhône-Alpes, Provence-Alpes-Cote d'Azur and the eastern part of Occitanie. 

This valley spans a steep North-South climatic and environmental gradient (mean annual 

temperature difference of 5°C over 460 km) across the boundary between the 

Mediterranean and Continental biogeographical regions in South-eastern France, Western 

Europe (Metzger et al. 2005, 2008). The Mediterranean/Continental biogeographical 

boundary is especially pronounced in this valley, with a steep latitudinal temperature 

gradient concurrent with marked differences in vegetation and habitats. Rueda et al. 

(2010) showed that this biogeographical boundary results from marked differences in 

tree, bird and butterfly communities and, to a lesser extent, in mammal and amphibian 

communities. It is also a classical boundary between the Mediterranean and Circumboreal 

second order phytoregions as defined by Takhtajan (1986).  

 

Araújo et al. (2006) have shown that a great proportion of amphibian and reptile 

species unable to disperse are projected to reduce their distribution range in response to 

climate changes mainly in South‐western Europe, because of the loss of suitable climate 

space. The Rhodanian valley is especially sensitive to these losses according to 

projections for 2050 (Fig. 13.). Thuiller et al. (2005) founded the same pattern in plant 

species. South-eastern France could therefore be especially sensitive to climate changes 

in the near future.  
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Figure 13. Projected amphibian (a) and reptiles (b) species losses by 2050 across Europe 
(projections with feed‐forward artificial neural networks technique implemented in the 
climate envelope modelling implementation ‘BIOMOD’; six-class scale where increasing 
intensities of grey represent increasing losses). Adapted from Araújo et al. (2006). The 
Rhône-Saône valley area is indicated in red.  

 

Due to its intermediate location between glacial refugees of  the Iberian, Italian 

and Balkan peninsulas (Hewitt 2001; Fig. 14), this valley also corresponds to a major 

postglacial recolonization route. Indeed, the range of many temperate species appear to 

have been restricted to the southern peninsulas during one or more glacial periods, 

allowing genetic diversity to be preserved in refuge areas. In the central and northern 

regions of Europe, temperate species frequently exhibit lower levels of mtDNA genetic 

diversity than found in southern refugia, due to rapid post-glacial recolonization and 

repeated founder events during interglacial periods (Hewitt 2004). The postglacial re-

colonisation of Central and Northern Europe by Mediterranean species mostly followed 

four model patterns (Habel et al 2005): (i) the hedgehog (postglacial expansion from all 

three southern European differentiation centres), (ii) the bear (expansion of the western 

and the eastern lineage, but trapping of the Adriatic-Mediterranean lineage by the Alps), 

(iii) the butterfly (expansion of the Adriatic- and the Pontic-Mediterranean lineages, but 

trapping of the Atlantic-Mediterranean lineage by the Pyrenees), and (iv) the grasshopper 

(major expansion to Central Europe only from the Balkans and trapping of the Atlantic- 

and Adriatic-Mediterranean lineages by the Pyrenees and Alps, respectively).  
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These patterns have been reported in many animal and plant species, e.g., the "hedgehog" 

paradigm in the silver fir Abies alba (Konnert & Bergmann 1995), the "bear" in the shrew 

Crocidura suaveolens and the water vole Arvicola terrestris (Taberlet et al. 1998), the 

"grasshopper" in the black alder Alnus glutinosa (King & Ferris 1998); the "butterfly" is 

currently only described in three butterfly species (Schmitt 2007; e.g., the marbled 

whites M. galathea/lachesis complex; Habel et al 2005). In most of these patterns, 

recolonization routes cross western Europe through Southeastern France (Petit et al. 

2002; Fritz et al. 2005), precisely in the valley of the middle and lower Rhône River and 

of the Saône River. As a consequence, a network of contact zones is spread over this 

valley as the Alps mountain often act as a dispersal barrier, inducing secondary contact 

between populations and species, and leading to hybridization areas in this valley 

(Schmitt 2007; H2 and H3 in Fig. 14).  

 

 
Figure 14. The three main Mediterranean refugies and differentiation centers of Southern 
Europe during the last Ice Age (R1-R3) and the geographical location of the five main 
contact and hybridization areas where different biota came into secondary contact during 
the post-glacial range expansion processes (H1- H5). From Schmitt (2007); based on 
Taberlet et al. (1998) and Hewitt (1999). 
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The Rhône-Saône valley is also a relevant area to study urbanization, as the 

“Grand Sud-Est” regions have a dynamic demography, with for example 35% of its 

inhabitants born outside this area in 1999 (Dou et al. 2001). The valley has been urbanized 

since Roman times and urbanization processes are still important today,  giving birth to 

large and constantly expanding urban areas. Today, the constraints on urban planning 

associated with the river have been much reduced by various developments, giving the 

towns new options for urban planning (Delahaye 2004). 

 

 
 

Figure 15. Transport structures and spatio-logistic dynamics in South-eastern France. 
Simplified from Piquant (2003; Fig. 2). 
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Last, the valley is located between Central European countries, Italy and the 

Iberian Peninsula, and is experiencing a growth in its transport and logistic activities. 

Over the last twenty years, trade between European countries has boomed, intensifying 

the flow of goods and people between Germany and the Iberian Peninsula through the 

Grand Sud-Est, France (Fig. 15). The Lyon area is becoming more and more central in 

South-eastern France and is now considered a European logistics center (Piquant 2003). 

Such dynamic development of transport and trade increases the probability of introducing 

non-native species in this area (di Castri 1989). Piquant (2003) also suggested that this 

dynamism still has huge room for growth and profit, and flows should further intensify 

in the decades to come. The Rhône-Saône valley must therefore be considered as an area 

of major environmental stakes, particularly with regard to the increased risk of biological 

invasions. 

 

In conclusion, many issues related to global changes, biological invasions, species 

distribution and genetic exchange between species are of concern in this area, making it 

an open-air laboratory to assess ecological issues in a changing world. 

 

 

1.7- THESIS OVERVIEW  

1.7.1- Aims of the thesis 

Interspecific hybridization is becoming more and more common around the world, 

favored by climate changes inducing shifts in species distribution as well as human-

induced translocations of organisms and habitat modification, and therefore often 

associated with urbanization. Besides, hybridization may sometimes threaten the 

conservation of local biodiversity, for example by altering the genetic integrity of native 

species through introgression (Taylor et al. 2015). Therefore, the acceleration of climate 

changes and urbanization makes it utgent to study hybridization in order to understand 

the consequences of the erosion of reproductive barriers between distinct evolutionary 

lineages (Vallejo-Marín & Hiscock, 2016).  
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As these global changes act at multiple spatial scales on the environment, the 

investigation of a sufficiently large biogeographical area is of prime importance: (i) to 

identify relevant patterns of distribution, adaptation, and intra- and interspecific genetic 

exchanges, but also (ii) to address issues related to the impacts of hybridization and to the 

direction of gene transfer between taxa. From this perspective, the Rhône-Saône valley 

provides a major opportunity to further understand the relationships between biological 

invasions, climate, urbanization, and hybridization. Indeed, studying urbanization while 

integrating other global changes such as global warming should prove essential to unravel 

the processes involved. In addition, the Tetramorium ant genus, and more specifically the 

two species I have described above, T. immigrans and T. caespitum, seem particularly 

suitable for conducting such an integrative study. 

 

In this context, my thesis has the main 

objective to provide an integrated 

perspective on the responses of 

biodiversity to global changes through 

the assessment of the relationships 

between climate, urbanization, biological 

invasions and hybridization patterns 

between ant species of the Tetramorium 

caespitum complex (Fig. 16).   

 

More specifically, the objectives of the thesis are: 

 

– Regarding the identification of species and distribution patterns – 

• To map the range limits of cryptic Tetramorium species while avoiding errors 

attributable to both hybridization and rarity 

• To identify climatic factors limiting the distribution of Tetramorium species 

across a major biogeographical boundary 

• To assess at what scales urbanization impacts Tetramorium species distributions 

 

Figure 16. Schematic overview of the main 
objective of the thesis. 
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– Regarding global changes and biological invasions –  

• To investigate how the interaction between climate and urbanization impacts 

Tetramorium immigrans occupancy  

• To examine the role of human activity in the spread of T. immigrans through the 

study of its genetic structuration  

• To gather evidence on the native or invasive status of T. immigrans in Western 

Europe  

 

– Regarding interspecific hybridization – 

• To investigate hybridization patterns between T. immigrans and T. caespitum and 

to detect potential introgression between them  

• To determine if chemical profiles and behavioral assays reveal that species 

recognition cues are both present and perceived in the hybrid complex of T. 

immigrans x T. caespitum 

• To unravel the mating system of T. immigrans and T. caespitum and to assess how 

it could play a role in a hybridization context through potential pre- or post-

copulatory sexual selection  

 

– And ultimately – 

• To provide a synthesis of my results and to show how they bring clarity into the 

complex interactions between biological invasions, climate, urbanization and 

hybridization  

• To offer short and longterm perspectives for further researches  
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1.7.2- Thesis outline 

This thesis includes five chapter.  

 Present Chapter 1 is a general introduction and provides a general overview of the 

thesis’ subjects. This introduction is followed by three research axes (Chapters 2 to 4) 

combining six papers, each of them using a variety of multi-disciplinary approaches, 

and by a general discussion of the results and perspectives of the thesis (Chapter 5).  

 In Chapter 2, I study Tetramorium ant species along a large-scale climatic gradient 

and 19 urban gradients in the Rhône-Saône valley (France). I investigate 

environmental factors that limit the distribution of these species from the local scale 

to the biogeographical scale. I combine genetic tools based on nuclear and 

mitochondrial DNA to identify Tetramorium ant species and give a first description of 

the climatic niche of four Tetramorium species (Paper 1). I further investigate how 

urbanization structures the distribution of these species at four nested spatial scales 

(Paper 2).  

 In Chapter 3, I focus on Tetramorium immigrans, mobilizing multidisciplinary 

approaches to investigate the geographical distribution, genetic diversity and structure 

of this species in the Rhône-Saône valley. I test the hypothesis that urban warming, 

through Urban Heat Island effects, may lead to biological responses similar to climate 

warming in rural areas and I investigate the status of T. immigrans in the study area 

(Paper 3).  

 In Chapter 4, I investigate the processes involved in establishing the hybridization 

zone between Tetramorium caespitum and T. immigrans. I combine approaches based 

on simulations with Bayesian and Maximum-likelihood genetic clustering to highlight 

the existence of backcrosses between hybrids and parental species, showing fertility 

of hybrids (Paper 4). I also address the issue of inter-individual recognition 

mechanisms, mobilizing both behavioral biology and chemical ecology approaches 

(Paper 5). Finally, I use paternity analysis techniques to test the existence of pre- or 

post-mating sexual selection (Paper 6).  

 Finally, in Chapter 5, I discuss results of the thesis and how the relationships between 

global changes, hybridization and biological invasion within the studied species are 

structured. I then discuss the implications of these conclusions and I offer perspectives 

for future researches. 
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1.7.3- Articles accepted, submitted or in prep. 

Paper 1 

Cordonnier, M., Bellec, A., Dumet, A., Escarguel, G., Kaufmann, B. Range limits in 

sympatric cryptic species: a case study in Tetramorium pavement ants (Hymenoptera: 

Formicidae) across a biogeographical boundary. Insect conservation and diversity DOI: 

10.1111/icad.12316  

 

Paper 2 

Cordonnier, M., Gibert, C., Bellec, A., Kaufmann, B., Escarguel, G. Spatial scaling of 

the impacts of urbanization on species distribution within the genus Tetramorium. 

Submitted to Landscape Ecology 

 

Paper 3 

Cordonnier, M., Bellec, A., Escarguel, G., Kaufmann, B. Urbanization-climate 

interactions promote the expansion of species ranges: a case study in the invasive 

pavement ant Tetramorium immigrans. Submitted to Journal of Animal Ecology 

 

Paper 4 

Cordonnier, M., Gayet, T., Escarguel, G., Kaufmann, B. From hybridization to 

introgression between two closely related sympatric ant species. Submitted to Journal of 

Zoological Systematics and Evolutionary Research 

 

Paper 5 

Cordonnier, M., Mondy, N., Simon, L., Escarguel, G., Kaufmann, B. Discriminating 

conspecifics from heterospecifics in a hybrid zone: from behavioral cues to chemical 

signals. In prep for Behavioral Ecology  

 

Paper 6 

Cordonnier, M., Escarguel, G., Dumet, A., Kaufmann, B. Multiple mating and sexual 

selection in an interspecific hybridization context. In prep for Evolution  
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Chapter 2. Species identification and 

distribution patterns 
 

 
 
 
« I had the great idea of using markers to gently 
color the ants, so I could tell them apart, but I 
learned that this is exactly like somebody trying to 
gently color on you with a thirty-story building.» 

Jim Bentoncitation 
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Abstract 

1- In the context of climate changes, factors that determine the distribution patterns of 
European species of the ubiquitous ant genus Tetramorium were investigated.  

2- The study took place along a steep North-South climatic gradient across the boundary 
between the European Continental and Mediterranean biogeographical regions 
spanning 460 km along the Rhône valley, France.  

3- Ants from 1690 Tetramorium colonies were collected at 19 sampling zones. Species 
have been identified using an integrative approach based on a two-step process 
combining nuclear DNA (14 microsatellite markers), morphological examination and 
mitochondrial DNA cytochrome oxidase I sequencing. The impact of climate on 
species distribution patterns was tested using bioclimatic variables. 

4- Species discrimination was successful, despite a complex situation with cryptic 
species, interspecific hybridization and uneven sampling across species. Our results 
showed a strong effect of latitude, temperature and rainfall on the distribution of three 
of four species. T. semilaeve was found only south of the boundary, in warmer and 
dryer sites; T. caespitum extended north and 70 km south of the boundary and favoured 
colder sites with strong seasonal variation. T. immigrans was absent from the 
northernmost sampling zones and favoured warmer and wetter sites. T. moravicum 
was mostly found close to the boundary, but without significant climatic preferences. 

5- The fundamental role of climate as a factor limiting the ranges of these species at a 
major biogeographical boundary is confirmed. Monitoring range limits of these 
strongly climate-dependant species may offer exciting insights on the impact of 
climate changes on species distributions. 

 
Keywords: Bayesian clustering, Climate, Range limits, Species distribution, Species 
identification, Temperature gradient 
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INTRODUCTION 

Because of global climate change, major shifts in species distributions and range 

limits are expected in the coming decades (Parmesan & Yohe, 2003; Chen et al., 2011; 

Pecl et al., 2017). Climate is a major determinant of the natural distribution of species, 

with evidence both from the fossil record (Escarguel et al., 2011) and from recently 

observed trends (Parmesan & Yohe, 2003). It has long been known that for terrestrial 

organisms, temperature and precipitation are among the most important abiotic factors 

that may set range limits (Phillips 1860; Wiens 2011). Ectotherms such as insects are 

especially likely to be vulnerable to climate factors because their basic physiological 

functions such as locomotion, growth, and reproduction are strongly influenced by 

environmental temperature (Deutsch et al., 2008; Kingsolver et al., 2013). Their range 

limits are therefore determined by the capacity of species to match their thermal tolerance 

to the temperature of their habitat (Sunday et al., 2012).  

 

Accurate data on species ranges are needed to track range shifting over time 

(Yalcin et al., 2017) or to design conservation areas (Rondinini et al., 2006). Such data 

are rarely available for inconspicuous taxa such as most insect species, with negative 

consequences for conservation planning and serious biases in meta-analyses (Maclean & 

Beissinger, 2017; Pironon et al., 2017). Following the centre-periphery hypothesis (CPH; 

Pironon et al., 2017), species’ occupancy decreases close to range limits, leading to lower 

detection probabilities away from the distribution centre. This generates a major 

challenge in delineating range limits due to their intrinsically mobile and progressive 

nature (Brown et al., 1996, Sexton et al., 2009). To overcome this challenge, at least 

partially, sampling should extend deep into the expected ranges on both sides of the 

biogeographical boundary, as well as through a diversity of environments spanning the 

habitat niche of the species of interest. One further challenge for most inconspicuous 

species relates to taxonomy (which may also be the case for more conspicuous taxa; e.g., 

Cordes et al., 2017). Traditionally, species have been identified using morphological 

traits, but such characters may undergo convergent evolution under similar selective 

pressure, leading to underestimating the actual number of species and failing to identify 

cryptic species (Yang & Rannala, 2010; Morard et al., 2016). Genetic methods may 

therefore help support species identification (McKendrick et al., 2017).  
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Mitochondrial cytochrome oxidase I (COI) partial sequencing is widely used in 

taxonomy for species identification (e.g., Schlick-Steiner et al., 2006; Dinsdale et al., 

2010; Wilson-Wilde et al., 2010). However, identification results based only on 

mitochondrial DNA barcodes might sometimes be biased (e.g., due to mitochondrial 

introgression; Whitworth et al., 2007), and particularly in case of hybridization where the 

use of mitochondrial DNA cannot detect hybrids between taxa (McKendrick et al., 2017). 

Wilson-Wilde et al., (2010) also suggested that using COI for species identification is 

insufficient when dealing with closely related species. Approaches based on population 

assignment can palliate these problems using multilocus genotype data to identify groups 

of genetically isolated individuals which constitute potential species (Yang & Rannala, 

2010). Overall, the use of a combination of methods seems the best way to avoid 

misidentification in complex situations, i.e., involving cryptic species or interspecific 

genetic exchanges (Rellstab et al., 2011; Dantas-Torres et al., 2013; Schmidt-Roach et 

al., 2014; Wagner et al., 2017). 

 

The present study spans a steep North-South climatic and environmental gradient 

(mean annual temperature difference of 5°C over a distance of 460 km) across the 

boundary between the Mediterranean and Continental biogeographical regions in South-

eastern France, Western Europe (Condé et al., 2002; Metzeger et al., 2005, 2008) along 

the middle and lower Rhône River valley and further north along the Saône River, its 

main tributary. The Mediterranean/Continental biogeographical boundary is especially 

pronounced in this valley, with a steep latitudinal temperature gradient concurrent with 

marked differences in vegetation and habitats. Rueda et al. (2010) showed that this 

biogeographical boundary results from marked differences in tree, bird and butterfly 

communities, to a lesser extent in mammal and amphibians communities, and does not 

correspond to a transition zone for reptilian species. It is also a classical boundary between 

the Mediterranean and Circumboreal second order phytoregions, as defined by Takhtajan 

(1986). Across this major biogeographical transition, the present study focuses on range 

limits of Tetramorium ant species, a ubiquitous genus of small generalist ants including 

several important invasive pests such as T. bicarinatum (Nylander, 1846) (Hita-Garcia & 

Fisher, 2011), T. immigrans Santschi, 1927 (Wagner et al., 2017) and T. tsushimae 

Emery, 1925 (Steiner et al., 2010).  
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T. immigrans has an invasive status in North America, where it was introduced in 

the 19th century or earlier (Steiner et al., 2008a), and is considered native in Europe where 

its status has never been investigated. So far, species of Tetramorium have been recorded 

in France, including T. semilaeve André, 1883, T. meridionale Emery, 1870, two species 

of the Tetramorium chefketi complex (T. forte Forel, 1904, T. moravicum Kratochvíl, 

1941), and five species of the Tetramorium caespitum complex: T. impurum (Foerster, 

1850), T. alpestre Steiner, Schlick-Steiner et Seifert, 2010, T. immigrans, T. indocile 

Santschi, 1927, and T. caespitum (Linnaeus, 1758) (Schlick-Steiner et al., 2005; Schlick-

Steiner et al., 2006; Güsten et al., 2006; Steiner et al., 2010; Blatrix et al., 2013; Borowiec 

et al., 2015; Csösz et al., 2014; Wagner et al., 2017). Morphological identification can be 

used to discriminate Tetramorium species (e.g., Güsten et al., 2006; Borowiec et al., 

2015; Wagner et al., 2017), but difficulties arise within the Tetramorium caespitum 

complex where species appear very similar in colour and form (Schlick-Steiner et al., 

2006; Wagner et al., 2017). Furthermore, hybridization is already known between two 

species of this complex, namely T. alpestre and T. indocile (Steiner et al., 2010) and is 

strongly suspected between T. immigrans and T. caespitum (Wagner et al., 2017), which 

significantly complicates species identification. As a consequence, it is necessary to use 

a combination of methods to identify Tetramorium species in France. Finally, to our 

knowledge, nothing was known about the fine-scale distributions of these species in the 

study area, even if some of them differ in ecological specificity – e.g., Wagner et al. 

(2017) indicate that the thermal niche of T. caespitum corresponds to an average standard 

air temperature of 16.1°C, 19.9°C for T. immigrans or 8.6°C for T. alpestre. At a finer 

scale, such niche differences may result in a strong spatial structure of these species along 

the study north-south climatic gradient. 

On this ground, the two major questions addressed by the present study are: (i) 

How feasible is mapping range limits for these inconspicuous taxa including cryptic 

species, while avoiding errors attributable to both hybridization and rarity? (ii) How do 

Tetramorium species’ range limits respond to climatic factors across a major 

biogeographical boundary? To address these questions, a stratified sampling scheme was 

used to collect individuals from 1690 Tetramorium ant colonies. We applied a two-step 

approach to identify species: (i) Bayesian clustering based on nuclear DNA (14 

microsatellite markers), and (ii) species assignment of subsamples of these clusters using 
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morphology and mitochondrial DNA (Cytochrome Oxidase I). We subsequently analyzed 

the range limits of the detected species using climatic data, expecting a strong climate-

driven spatial structure of the different species with broad changes in species occurrences 

across the Mediterranean/Continental biogeographical boundary. 

 

METHODS 

Biological model, study area and sampling scheme 

Tetramorium taxon concepts (sensu Packer et al., 2018) used here are based on 

Güsten et al. (2006) for T. moravicum and T. forte, and on Wagner et al. (2017) for the T. 

caespitum complex (including T. immigrans and T. caespitum) and on Borowiec et al. 

(2015) for T. semilaeve. Sampling was carried out along a 460 km climatic gradient located 

in France, east of the Saône and Rhône Rivers, extending from the city of Langres in the 

North (47° 51′ 12″ N, 5° 20′ 02″ E) to the city of Tarascon in the South (43° 48′ 21″ N, 4° 39′ 

37″ E). The gradient extends over the limit between two major European biogeographical 

regions (Mediterranean and Continental, Condé et al., 2002), which is located ca. 200 km 

North of Tarascon and 260 km South of Langres (Fig. 1). The Mediterranean region is 

characterized by cool winters, warm dry summers, and wet autumns. The Continental region 

has cold winters, warm dry summers and rainfall spread over most of the year.  

We collected at least 30 worker ants per colony sample from altitudes between 0 and 

470 m a.s.l. in 19 sampling zones which were at least 20 km apart and comprised cities with 

their adjoining peri-urban and rural areas (Fig. 1). In order to capture habitat heterogeneity, 

we collected 30 colony samples distributed homogeneously throughout contiguous urbanized 

areas (as defined by the classes 1.1.1, 1.1.2 and 1.2.1 in Corine Land Cover 2012) and 60 

colony samples distributed homogeneously along a 15 km long and 3 km wide transect to the 

east of the urbanized areas. The 1:100,000 scale of this land cover data, which lumps small 

agricultural and semi-natural patches with artificialized surfaces, is not designed to allow 

analyses of the impact of urban gradients on species distribution. Corine Land Cover data 

was used here to ensure that a representative diversity of habitats were sampled in the study. 

Samples were collected in diverse environments including urban pavements, roadsides, 

public parks, orchards, farmlands, fields, vineyards, meadows, riverbanks and forest paths.  

Sampling was conducted along a predefined path in 2015 and 2016 from April to September 

on non-rainy days with temperatures ranging from 16 to 28°C, with a minimum distance of 
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200 m between two colonies. Sampling was performed by teams of two persons 

conducting a direct search for Tetramorium nests followed by hand collection with an 

entomological aspirator. Collected ants were stored in 96% ethanol. Individuals from 1710 

colonies were collected for this study and deposited as voucher material in the collection 

UCBLZ, CERESE, Université de Lyon, Université Claude Bernard Lyon1. 
  

 
Figure 1. Map of the sampling zones (90 samples from each zone). 1: Langres, 2: Dijon, 
3: Beaune, 4: Châlon-sur-Saône, 5: Tournus, 6: Mâcon, 7: Belleville, 8: Villefranche-sur-
Saône, 9: Lyon, 10: Vienne, 11: Péage-de-Roussillon, 12: Tournon sur Rhône, 13: 
Valence, 14: Livron, 15: Montélimar, 16: Bollène, 17: Orange, 18: Avignon, 19: 
Tarascon. Main rivers are indicated in dark grey, altitude is indicated by grayscale (black 
= high altitude). The boundaries of the three major climatic zones are indicated by a dotted 
line. A: Continental zone, B: Mediterranean zone and C: Alpine zone. Mean annual 
temperature (°C) and mean precipitation (mm) as well as the associated variances are 
indicated on the right for each sampling zone. 
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Microsatellite genotyping 

One randomly selected individual per colony was used for genetic analyses. DNA 

was extracted from whole individuals, which were crushed and then mixed with 150 μL 

of Chelex® 100 and 10 μL of proteinase K (15 mg.mL-1) at room temperature; the 

solution was incubated at 55°C overnight (Casquet et al., 2012). For genotyping, 17 

microsatellites developed for T. immigrans or T. tsushimae by Steiner et al. (2008b) were 

organized in three multiplex PCR mixes. All three mixes had a total volume of 10 μL 

with 1X MasterMix (kit type-it microsatellite PCR Qiagen n°206246) and 2 μL DNA. 

Mix1 contained 0.08 μM of tspE53a primers, and 0.2 μM of tspE52b, tspE52d, tspE52k, 

ttsU55a and ttsU56d primers. Mix 2 contained 0.15 μM of tspE51oR3 primers, 0.2 μM 

of tspE51a, tspE51b, tspE51d, ttsU58i and ttsU59j primers, and 0.3 μM of tspE51i 

primers. Mix 3 contained 0.08 μM of ttsU54e, 0.15 μM of tspE52a, and 0.2 μM of 

tspE53b and ttsU57l. Amplifications consisted in 5 min at 95°C, then 32 cycles (30s at 

95°C, 90s at 60°C, 30s at 72°C), and 30 min at 60°C. All PCR products were analyzed 

with an ABI 3730xl sequencer (service provided by GENOSCREEN). 

Electropherograms were read and interpreted with Genemarker 1.95 (SoftGenetics). 

Three markers were discarded because they presented too many disparities in allele sizes 

and risks of misinterpretation at the reading stage. In addition, samples where alleles were 

not clearly legible for at least 12 markers were removed from the analysis, resulting in 

1690 genotypes for 14 markers. For each microsatellite marker we computed null allele 

frequency, Fis (GENEPOP v. 4.2; Rousset, 2008), deviation from Hardy-Weinberg 

equilibrium, observed and expected heterozygosity and number of alleles and effectives 

alleles (GENALEX v.6; Peakall & Smouse, 2006) (Table S1). 

 

Identification of clusters 

To determine the number of genetically homogeneous groups using microsatellite 

data, the Bayesian clustering algorithm implemented in the software STRUCTURE v. 

2.3.1 (Pritchard et al., 2000) was used, based on the admixture model with correlated 

allele frequencies and the LOCPRIOR model with prior location of samples (Hubisz et 

al., 2009), and with a number of a priori unknown clusters (K) varying from K = 1 to K = 

20, running 10 iterations for each K-value. Each run consisted of 500,000 replicates of 

the MCMC after a burn-in of 500,000 replicates.  
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To investigate the 10 independent runs, clustering results were analyzed using 

CLUMPAK (Kopelman et al., 2015) based on a Markov clustering algorithm which 

identifies sets of highly similar runs grouped together in modes and separating these 

distinct groups of runs to generate a consensus solution for each distinct mode. For any 

given K, the different runs were either consensual with a single mode or resulting in both 

a majority mode consisting of most of the iterations and one or more minority modes 

consisting of the remaining iterations. Next, we used CLUMPAK to identify an optimal 

ordering of inferred clusters across different values of K, and then to define the optimal 

K-value using the method of Evanno et al., (2005). Finally, we calculated the mean of the 

logarithm of the data probability and associated per K variance using Structure Harvester 

(Earl & vonHoldt, 2012). We then retained the most conservative value of K compatible 

with these different criteria – concordance between runs, Evanno et al.’s (2005) method, 

and mean lnP(K). Based on the consensus solution of the majority mode, we obtained K 

distinct Q-values for each individual corresponding to their membership coefficient for 

each cluster.  

 

Identification of species by Sanger sequencing of mtDNA and morphological 

examination 

For each of the K clusters identified by genotyping, 10 individuals with a Q-value 

higher than 0.95 were Sanger sequenced for a stretch of mitochondrial gene cytochrome 

oxidase I (mtDNA). COI was amplified by PCR using specific primers developed from 

longer stretches of COI from the literature (Schlick-Steiner et al., 2006; using two 

sequences: Tetra_F: TAGCATCTAATRTCTTTCAYAGAGG, Tetra_R: 

AGTATCAGGATAATCTGAGTAYCGAC) in a 30 μL total volume of 170 μM dNTPs, 

0.1 μg.μL-1 BSA (Biolabs, B9001S), 0.16 μM of primers, 1.5 mM MgCl2, 2 μL DNA, 

1.2 U Taq Polymerase (Eurobio, GAETAQ00), and 1X PCR Buffer (Eurobio, 

GAETAQ00). Amplifications consisted in 5 min at 94°C, then 40 cycles (30 s at 94°C, 

30 s at 48°C, 30 s at 72°C), and 5 min at 72°C. After purification, products were 

sequenced (service provided by BIOFIDAL, ABI 3730xl sequencer) and compared to 

reference sequences published by Schlick-Steiner et al. (2005), Steiner et al. (2005), 

Schlick-Steiner et al. (2006) (accession numbers available in Fig. S3), and obtained from 

GenBank using Blast-n to identify the sequenced species.  
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For each cluster identified by genotyping, 10 colonies containing individuals with 

a Q-value higher than 0.95 were identified to the species level by morphological 

examination following Seifert (2007) and Güsten et al. (2006) to confirm genetic 

identification. Only individuals belonging to species outside the T. caespitum complex 

(i.e., T. forte, T. moravicum, and T. semilaeve) were identified at the species level; 

individuals belonging to T. immigrans and T. caespitum were identified as members of 

the T. caespitum species complex. 

 

Individual species assignment 

Clusters corresponding to sub-populations of the same species were grouped 

together. An individual was assigned to a species if its Q-value was greater than 0.95. 

Individuals for which no status could be determined (i.e., without any Q-value > 0.95) 

were considered unidentified individuals, interspecific hybrids or otherwise unidentified 

species and therefore removed for subsequent analyses.  

 

Analysis of geographical and climatic ranges 

All analyses were conducted using R v. 3.3 software (R Development Core Team, 

2004). To understand how climate affects the regional-scale distribution of species, we 

first investigated interspecific differences in latitudinal distributions. As latitudinal 

locations of samples are not normally distributed we used nonparametric Kruskal-Wallis 

tests coupled with Mann-Whitney-Wilcoxon tests and Kolmogorov-Smirnov tests for 

contrasts (including a simple Bonferroni correction). 

 

We next investigated the effect of temperature and precipitations on the presence 

of species. For each colony sample, climatic data of the sample site were extracted with 

ArcGIS 10.1, using the WorldClim 1.4 dataset at 30’ cell size (~1 km2; 

www.worldclim.org; Hijmans et al., 2005). To establish a set of uncorrelated climatic 

variables for the analysed geographic area, we ran an exploratory data analysis and a 

collinearity analysis, eliminating one of the variables in every pair with a Pearson 

correlation value > 0.7 (Dormann et al., 2013; Fig. S1).  
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The final data set included mean annual temperature (bio01; mean = 11.78 ± 

1.17°C, range: 9-14°C), seasonality of temperature (bio 04; mean = 6318.71, range: 6033-

6476), annual precipitation (bio12; mean = 787.21 ± 51.71 mm, range: 670-898 mm) and 

precipitation of the coldest quarter (bio19; mean = 179.56 ± 17.29 mm, range: 146-

242 mm). 

 

We then used partial models to describe the impacts of climatic factors on the presence 

of each species using a two-step process: 

 

- First, bioclimatic covariates were log-transformed and scaled to reduce the influence 

of extreme values and improve model convergence as suggested by Diez and Pulliam 

(2007). We used logistic linear mixed models treating species presence (presence = 

1; absence = 0) as a repeated measurement of species occurrence. Sample sites (n = 

19) were introduced in the model as a random effect. The bioclimatic variables (bio1, 

bio4, bio12 and bio19) and the interaction between mean annual temperature and 

annual precipitation (bio1:bio12) were introduced as explanatory terms in the fixed 

part of the model. This model was then used in a model selection procedure using the 

dredge function (R v.3.3 package MuMin; Bartoń 2013), performing automated 

model selection with subsets of the supplied initial model generated with all possible 

combinations. The sample-size corrected version of the Akaike information criterion 

(AICc) was used to rank the models and to obtain model weights; 

 

- Finally, the simplest model having a ΔAICc < 2 was retained and used for parameter 

estimation. The significance of each explanatory term was tested using a Wald test 

(Luke, 2017) and looking at confidence intervals on the estimates. Homoscedasticity, 

independence and normality of residues were checked for each model (package 

statmod; Giner and Smyth, 2016). The absence of spatial autocorrelation in the 

residuals of the final models has been assessed based on Moran's I values and 

associated p values for each model using the ncf package (Bjornstad, 2018).  
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RESULTS 

The Bayesian clustering analysis revealed consistent modes for models with K = 

1, 2, 6, 7, 13 and 18 clusters (major mode recovered in at least 9/10 runs). Although 

methods based on ΔK suggested retaining K = 2 clusters (ΔK = 112.698), K = 6 clusters 

also appeared suitable (ΔK = 28.912, next max ΔK obtained for K = 3: ΔK = 1.930). 

Based on mean lnP(K), K = 6 was markedly better than any other K value with a lower 

associated deviation (mean lnP(K) = -121,453.380, Stdev LnP(K) = 64.132). All these 

metrics can be consulted in Table S2 for all K values tested. A 6-cluster model appeared 

substantially better regarding the different metrics as well as consistency between 

iterations.  

 

Analysis of the 57 COI sequences (length 472 to 756 bp; GenBank accession 

numbers MH398246 to MH398302) as well as morphological examination suggest that 

the K = 6 clusters correspond to 5 distinct Tetramorium species, identified as T. forte (n = 

8 sampled specimens), T. moravicum (n = 60) and T. semilaeve (n = 95), and genetically 

identified as T. caespitum (n = 698) or T. immigrans (n = 544, separated into two clusters 

whose nature and characteristics will necessitate further analyses) (Fig. 2, Table S3, Fig. 

S2). Individuals unassigned to a cluster after Bayesian clustering (n = 285; 

simultaneously associated to several groups in Fig. 2a, including 240 individuals whose 

Q-values were mixed between T. immigrans and T. caespitum) were considered hybrids 

or belonging to unidentified species. Therefore, these individuals were removed for 

subsequent analyses, as the precise identity of these specimens is beyond the scope of this 

paper and will be the subject of further study (Cordonnier et al., ongoing work).  
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Figure 2. Structure bar plots. (a) Each individual is represented by a vertical line, w
hich is partitioned into k coloured segm

ents that 
represent each individual's estim

ated m
em

bership fractions in k clusters (Q
-values) from

 the consensus solution of the m
ajority m

ode 
for the K

 = 6 bayesian clustering assignm
ent. (b) The five colored segm

ents represent each individual's estim
ated m

em
bership 

fractions in five species identified by Sanger sequencing and m
orphological exam

ination of 10 random
ly selected individuals per 

cluster. The boxed area includes 285 individuals (16.9%
) for w

hom
 identification has not been conclusive of a definite cluster and 

w
ho have been om

itted from
 subsequent analyzes. 
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In the study area, the ranges of the identified Tetramorium species showed a strong 

effect of latitude (Fig. 3). T. caespitum was found in the northernmost parts of the 

Continental area (sampling zones 1 and 2 in Fig. 1 and Fig. 3), and was absent from 

southernmost parts of the Mediterranean area (sampling zones 16 to 19 in Fig. 1 and Fig. 

3). T. semilaeve occurred in the Mediterranean area only (sampling zones 15 to 19 in Fig. 

1 and Fig. 3) and was completely absent from the Continental area. T. forte was restricted 

to the southernmost part of the Mediterranean area (sampling zones 17 to 19 in Fig. 1 and 

Fig. 3). T. immigrans appeared widely distributed, missing only from the 3 northernmost 

sampling zones (1 to 3 in Fig. 1 and Fig. 3).  

 
Figure 3: Proportion of each species in each sampling zone (left). Latitudinal 
distributions of the five species (right). White dots are outlier individuals; thick black 
horizontal line: median value; box ends: upper and lower quartiles; whiskers: max and 
min values. Horizontal dashed lines represent the limit between continental and 
Mediterranean areas (A-B limit in Fig. 1). Letters a, b, c indicate the results of the 
nonparametric Mann-Whitney-Wilcoxon tests; Letters A, B, C, D indicate the results of 
the nonparametric Kolmogorov-Smirnov tests (different letters when the difference of 
impervious area between the taxa is significant at 0.05 Bonferroni-corrected level, all 
tests in Tab S5). 
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T. moravicum was more largely distributed than T. immigrans (sampling zones 3 to 19 in 

Fig. 1 and Fig. 3) but most occurrences were found in sampling zone 15 (Fig. 1 and Fig. 3), 

close to the boundary between the Mediterranean and Continental areas. 

 

Table 1: Logistic linear mixed models resulting from the model selection procedure (see 
text for details). For each tested species and parameter, estimate corresponds to the 
estimated parameter value, z and P correspond to the associated statistical test, and C.I 
corresponds to the 95% confidence interval around this parameter (bio1: mean annual 
temperature, bio4: seasonality of temperature, bio12: annual precipitation, bio19: 
precipitation of the coldest quarter). The parameter bio1: bio12 corresponds to the 
interaction between the variables bio1 and bio12. All the variables used in the models 
were previously log-transformed and scaled. 

Parameter T. immigrans T. caespitum T. semilaeve T. moravicum 

bio1 

estimate 3.516 -3.508 3.773 --- 
z 7.995 -7.547 0.6803 --- 
P 1.29*10-15 4.44*10-14 2.93*10-08 --- 
CI 2.684; 4.4379 -4.506; -2.611 2.654; 5.434 --- 

bio4 

estimate --- 1.385 -11.184 -0.712 
z --- 3.066 -4.736 -1.401 
P --- 0.0022 2.18*10-06 0.161 
CI --- 0.507; 2.317 16.263; -6.971 -1.900; 0.208 

bio12 

estimate 1.662 --- -1.588 --- 
z 3.612 --- -2.608 --- 
P 0.0003 --- 0.0091 --- 
CI 0.723; 2.608 --- -2.824; -0.425 --- 

bio19 

estimate -2.866 1.122 7.149 --- 
z -7.165 3.975 2.467 --- 
P 7.77*10-13 7.04*10-05 0.0136 --- 
CI -3.690; -2.076 0.550; 1.687 1.632; 13.073 --- 

bio1:bio12 

estimate --- --- 6.576 --- 
z --- --- 6.561 --- 
P --- --- 5.34*10-11 --- 
CI --- --- 4.757; 8.705 --- 

 

Regarding relationships between species presence and quantitative bioclimatic 

variables within the study area, the selection model process resulted in different optimal 

logistic linear mixed models for each species (Table 1, Table S4). These models showed 

that compared to other species, T. semilaeve was present in sites with higher mean annual 

temperature (bio1; z = 0.6803, P = 2.93×10-8) and lower levels of changes in temperatures 

over the course of the year (bio4: z = -4.736, P = 2.18×10-6). It was present in dryer sites 

(bio12: z = -2.608, P = 0.0091) but with high level of precipitations during the coldest 

quarter (bio19: z = 2.467, P = 0.0136), and occurred in warmer sites where annual rainfall 
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is higher (bio1:bio12; z = 6.561; P = 5.34×10-11). Compared to other species, T. 

immigrans was present in sites where mean annual temperature is high (bio1; z = 7.995, 

P = 1.29×10-15). Sites with T. immigrans received significantly more annual rainfall 

(bio12; z = 3.612, P = 0.0003) but lower precipitations during the coldest quarter (bio19; 

z = -7.165, P = 7.77×10-13) than other species. T. caespitum was present in sites where 

mean annual temperature is lower (bio1; z = -7.547, P = 4.44×10-14), with high levels of 

changes in temperatures over the course of the year (bio4: z = 3.066, P = 0.0022) and high 

level of precipitations during the coldest quarter (bio19:  z = 3.975, P = 7.04×10-5). The 

distribution of T. moravicum was not affected significantly by any climatic variable in the 

study area. T. forte was not analyzed here as only 8 samples were collected. The results 

for all species and climatic variables are summarized in Tab. 2.1. 

 

DISCUSSION 

This study investigated range limits over a climatic gradient for a group of 

inconspicuous species including cryptic taxa, avoiding errors attributable to both 

hybridization and rarity. We identified five Tetramorium species in the Saône and Rhône 

valleys: T. forte, T. moravicum, T. semilaeve, T. immigrans, and T. caespitum. The spatial 

distributions of the last three were strongly correlated to climatic conditions. Most species 

had a distribution whose limits corresponded with the biogeographical boundary, except 

for T. immigrans whose distribution covered both the Continental and Mediterranean 

parts of the study area. T. caespitum was mostly found North of the boundary. T. 

semilaeve, T. forte were found South of the biogeographic boundary. T. moravicum was 

found mostly close to the boundary, with few locations further North. 

The present study is an example of an effective and relevant approach to 

discriminating species within a group with interspecific hybridization and cryptic species 

(Schlick-Steiner et al., 2006; Wagner et al., 2017). Each species detected was represented 

by at least 60 individuals (except T. forte with only 8 individuals). Three further species 

have been identified close to the study area but have not been detected here: T. alpestre 

is a high-altitude species (above 900 m a.s.l.) in the sampled latitudes (Steiner at al. 2010; 

Wagner et al., 2017); T. indocile is described as generally rare in Southern and Western 

Europe (Csösz et al., 2014) but has been found in the Swiss Alps as well as in western 

France (Wagner et al., 2017); T. impurum was found from Greece to Spain, and as far 
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north as Belgium, with widely differing annual average temperatures (Wagner et al., 

2017). These species are most likely absent from the study area, or at least very rare and 

therefore undetected.  

Regarding the Bayesian clustering approach used in the two-step procedure of 

species identification, the method used to select the number of clusters was efficient at 

discriminating species where taxonomy is clear and avoids some of the problems inherent 

to selecting the value of K that best fits the data. A simple hierarchical structure is often 

assumed, most of the time with individuals clustered within populations and populations 

clustered within geographical regions, but the different levels are not necessarily 

hierarchically structured: a species may be structured into geographical regions, but also 

into ecotypes across regions (Meirmans 2015). Therefore, Meirmans (2015) suggested 

discussing all clustering results that warrant a biological interpretation because clustering 

analysis is an exploratory analysis with interpretations at multiple levels. In this study, 

considering all K values between 1 and 20 helped avoid missing biologically relevant 

structures. This is all the more appropriate here as the clusters are of unequal sizes, a 

situation where it is more difficult to accurately estimate K across an existing population 

structure (Puechmaille 2016). Finally, a problem commonly raised in the literature is the 

overrepresentation of the K = 2 situation when using ΔK approaches (Gilbert 2016; Janes 

et al., 2017). These points all emphasize the need for validation of clustering results 

through multiple decision criteria, using comparisons of outcomes obtained from 

different methods to improve confidence in the results, and to use a conservative approach 

based on biological assumptions. The multi-criterion approach proposed here is both 

efficient and able to solve the problems associated with K = 2 and cluster size 

heterogeneity; it proved particularly appropriate in a taxonomically complex situation 

including hidden biodiversity. 

As expected, the Tetramorium species distributions in the study area correlate to 

latitude, except for T. moravicum. We therefore investigated which climatic factors were 

associated with these distributions. Species from the T. caespitum complex have already 

been the subject of a study of thermal niches, but only standard air temperature (i.e., 

altitude-corrected mean air temperature of the nearest three meteorological stations from 

May, 1st to August, 31st) was considered (Wagner et al., 2017), except for T. immigrans 

whose climatic niche had been previously studied using climatic variables, but without a 
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detailed analysis of individual variables (Steiner et al., 2008). The present results suggest 

that T. immigrans favors warm environments, as also suggested by Wagner et al., (2017), 

and requires high levels of precipitation, especially during its activity period as it may 

tolerate a dry period during the coldest months corresponding to the winter phase of 

inactivity. Conversely, T. caespitum was found in predominantly cold sites of the study 

area, with significant seasonal temperature variations and wet conditions in winter. T. 

semilaeve was found in warmer environments with little temperature variations, overall 

dry but with important winter precipitations. T. moravicum seemed to be a ubiquitous 

species, with no significant climatic driver. For T. forte, the small number of samples was 

insufficient to investigate climatic preferences. 

Other factors not considered in this study may also be influential. At the habitat 

level, temperature and precipitation differences between urban areas and their rural 

surroundings (i.e., urban heat island effects) are certainly the more pertinent example. 

The impact of urbanization on climate is locally comparable to global climate change 

signal, suggesting that urbanization could strongly enhance climate change at local scales 

(Argüeso et al., 2014). Specifically, ectotherms from warmer, urban environments should 

not withstand colder temperatures and should tolerate heat better than ectotherms from 

cooler, rural environments (McLean et al., 2005). Indeed, in the set of Tetramorium 

species studied here, T. immigrans has been found to favor urban parts whereas T. 

caespitum has mainly been found in rural areas (Gippet et al., 2017); here we show that 

these species prefer warmer and cooler environments along the latitudinal gradient, 

respectively. Most of the species common in urbanized areas have more southern 

distributions and greater tolerance to dry conditions and warmer temperatures than 

species found in more natural sites (Menke et al., 2011), which corroborates our results 

regarding the latitudinal distributions and climatic preferences of T. immigrans and T. 

caespitum. It would be worth knowing if minimal or maximal temperatures limit the 

distributions of these species, as tolerance to maximal temperatures is often highlighted 

but sometimes minimal temperatures are actually more relevant (Warren and Chick, 

2013). Finally, it could also be important to consider the tolerance to dry conditions of 

these species, as T. immigrans seems to favor wetter conditions than other species. 

At the colony level, the location and construction of nests play a key role in 

regulating temperature and humidity (Hölldobler & Wilson, 1990; Blüthgen & Feldhaar, 
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2010). For example, nests can provide a thermal refuge in hot environments, allowing 

workers to retreat into a cool nest in the hottest part of the day (Ward 2007). In the 

detected species, T. caespitum is the only species known to build mounds higher than 

10 cm, which give it access to increased spring insulation raising nest temperatures 

(Wagner et al., 2017). Soil hygrometry and granulometry, as well as plant cover, could 

also strongly affect species distributions, even at a regional scale (Seifert, 2017). In 

addition, local biotic interactions (e.g. competition, predation, host-parasite interaction or 

mutualism) may affect species distributions and realized species assemblages across 

spatial scales (Wisz et al., 2013), including at macroecological scales (Araújo & Luoto, 

2007). For example, competition between species at the same trophic level can affect both 

range limits and geographic diversity patterns (Wisz et al., 2013). Competitive 

interactions are common between ant species and can alleviate spatial habitat partitioning 

(Parr & Gibb, 2010). Therefore, while Lessard et al., (2012) have shown that climate and 

biogeographical history are more important than competition in shaping ant communities, 

the role of competition in structuring ant assemblages should not be neglected (Cerda et 

al., 2013) and should be taken explicitly into account in future studies. 

 

CONCLUSION 

 

This study used an efficient method to discriminate species in a complex 

admixture situation including interspecific hybridization and cryptic biodiversity, while 

dealing with problems such as hierarchical cluster structuring due to uneven sampling 

across species. The identified species presented distinct range limits suggesting a strong 

effect of temperature and rainfall in distribution patterns, mostly following the 

Mediterranean-Continental biogeographical boundary. These results highlight the 

fundamental role of climate as a factor limiting the species ranges at a well-known 

biogeographical limit. On that ground, monitoring the distribution ranges of these species 

should offer exciting insights into the impact of ongoing climate changes.  
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Abstract 

Context 

Urbanization is a global change which deeply impacts landscapes. Long studied through 
transects along urbanization gradients, ecological response to urbanization can now be 
investigated precisely using direct GIS-based measures. Ecological responses are strongly 
scale-dependent as both large- and fine-scale environments drive the species distribution. 

Objectives 

To bridge the gaps regarding the effect of scaling on the distribution of biodiversity in the 
context of urbanization, the present study questions how urbanization structures the 
distribution of Tetramorium ants at different spatial scales.  

Methods 

Based on model averaging procedures, we investigated ~1400 individuals belonging to 
four Tetramorium species at four distinct spatial scales, from urban microhabitat (1 meter 
around the nest) to urban landscape (500 meter around the nest) in 19 urban gradients in 
South-eastern France. 

Results 

The probabilities of occurrences of Tetramorium caespitum and T. immigrans 
simultaneously depended on urbanization at the landscape and local scales, with T. 
caespitum avoiding urban microhabitats and impervious landscapes whereas T. 
immigrans favored them. These scaling impacts of urbanization were species-dependent 
as T. moravicum was associated with nonurban landscapes only, and T. semilaeve showed 
no association whatever the tested variables. 

Conclusions 

These results highlight the importance of considering several spatial scales 
simultaneously to study the impact of urbanization on species distribution. The highly 
contrasted responses to urbanization of T. immigrans and T. caespitum may indicate niche 
partitioning processes driven by urbanization. Monitoring the distribution range dynamics 
of these two species should provide insightful information into the impact of urbanized 
landscapes on species distribution. 

Keywords: Landscape, Microhabitat, Spatial scaling, Species distribution, Tetramorium, 
Urbanization  
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INTRODUCTION 

Urbanization is a global change of high magnitude and speed, which deeply 

impacts biodiversity (Grimm et al. 2008). Urban areas are characterized by a high density 

of built areas, as well as by broader scale changes such as the creation of vast networks 

of transport infrastructure or the intensification of agricultural activities on their 

periphery. Urbanization thereby converts natural and rural landscapes into profoundly 

modified habitats combining artificial surfaces, industrial pollution, anthropogenic 

disturbance, and strongly altered energy and nutrient cycles (Seress et al. 2014). Kark et 

al. (2007) identified traits in urban birds that enable species to dominate highly urbanized 

environments by becoming urban exploiters (i.e., species that colonize highly urbanized 

environments using human-provided resources and shelters; McKinney 2006), and 

suggested that ecological success in urbanized environments may depend on a 

combination of traits including diet, degree of sociality, sedentariness and preference in 

nesting sites. Marzluff et al. (2001) found that with increasing urbanization, bird species 

richness and evenness decreased whereas density increased. They also evidenced an 

upward trend in the proportion of non-native species (i.e., species that did not occur before 

importation by humans) toward the urban core. Numerous studies further show that the 

construction and expansion of cities promote the loss of native species and their 

replacement by non-native species (McKinney 2002, 2006), and favor generalist non-

native and native species (Müller et al. 2013).  

The gradient approach proposed by McDonnell & Picket (1990) provides a useful 

tool for untangling complex urban dynamics (McDonnell & Hahs 2008). However, 

transitions within urban gradients diverge abruptly between completely different habitats, 

such as woodlands and croplands, and therefore do not necessarily indicate gradual shifts 

in habitat quality (Warren et al. 2018). A few years earlier, urbanization gradient studies 

had already been criticized for being too simplistic due to the prevalence of the transect 

approach to represent the urbanization gradient (Alberti et al. 2001; McKinney 2006; 

Alberti 2008). The increased utilizes of geographic information systems has favored the 

use of direct measures of urbanization to characterize local landscape contexts. Today, 

thanks to these improvements, gradients can be defined with various levels of precision 

including broad measures of urbanization such as the proportion of built or impermeable 

surfaces, therefore providing a more precise measure of the characteristics of the urban 
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area that are likely to have a direct influence on ecological responses (McDonnell & Hahs 

2008). Such measurements are now often found in the literature (e.g., Seress et al., 2014 

for birds). Thogmartin & Knutson (2007) showed that avian species-habitat relationships 

respond to factors at multiple spatial scales. Such an impact of scaling is all the more 

relevant for smaller animals (e.g., insects or micro vertebrates), as weakly mobile species 

should respond to landscape patterns at finer spatial scales than would more mobile taxa 

(Concepción et al. 2015). Utilization of fine-scale artificial structures provides wildlife 

with alternative forms of shelter in urban environments (Lowry et al. 2013). Microhabitats 

also appear to be a determining factor for some taxa such as insects that are sensitive to 

micro-environmental variations (e.g. insolation, temperature or soil properties) (Mehrabi 

et al. 2014). Hartley et al. (2010) showed for example that fine-scale variations in 

temperature restrict brood development in the invasive Argentine ant (Linepithema 

humile) at the edge of its distribution, limiting populations spread. However, although 

species richness has been extensively studied throughout different spatial scales, much 

less is known about how species distributions vary across spatial scales, especially in 

arthropods (Hortal et al. 2010). As far as we know, such questions have never been 

addressed to measure the impact of urbanization on insect distribution. 

Studies on urbanization have included a broad diversity of organisms such as 

vertebrates, insects, plants, fungi, and micro-organisms (McDonnell & Hahs 2008). 

Among the fauna present in highly urbanized environments, ants (Formicidae) are good 

indicators of the environmental impact of urbanization (Philpott et al. 2010; Heterick et 

al. 2013; Gippet et al. 2017). In the case of ants, the magnitude and direction of urban 

impacts depend on species  life history and sensitivity to ecological disturbance, but also 

on species interactions and dispersal ability (Garden et al. 2006). Accordingly, almost all 

studies on the impacts of urbanization on ant communities have shown differences in 

species composition in urban habitats compared to nearby natural areas (Philpott et al. 

2010), suggesting that urbanization significantly alters ant species distributions. In 

Lessard & Buddle’s (2005), urban ant assemblages were characterized by several 

competitively dominant species, including one introduced species. Menke et al. (2011) 

showed that urban areas may facilitate the movement of some species, leading urban 

adapted ants to be particularly successful at tracking future climate change. Within the 

ant genus Tetramorium, only the study of Gippet et al. (2017) has investigated 
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urbanization impacts on species’ presence. However, this study considered only two 

cryptic Tetramorium species, concluding that T. immigrans (formerly called T. sp. E; 

Wagner et al. 2017) occurred in fragmented and warmer areas, contrary to T. caespitum 

(formerly called T. sp. U2; Wagner et al. 2017). It was focused on a single urban area and 

did not investigate how land-cover and scale explained their spatial distribution.  

To bridge the methodological gaps regarding the effect of scaling on the study of 

biodiversity distribution in the context of urbanization, the present study focuses on 

Tetramorium species at three distinct spatial scales, from urban microhabitat to urban 

landscape. We question how urbanization structures the distribution of Tetramorium 

species at these different spatial scales, and which scale is the most impacting for the 

studied species. We address this question using a sample of about 1400 individuals (one 

individual per colony) sampled along 19 urban gradients and belonging to four common 

species in South-eastern France: T. immigrans Santschi, 1927, T. semilaeve André, 1883, 

T. moravicum Kratochvíl, 1941, and T. caespitum (Linnaeus, 1758) (Schlick-Steiner et 

al. 2005; Schlick-Steiner et al. 2006; Borowiec et al. 2015; Wagner et al. 2017; 

Cordonnier et al. 2018). We test here the hypothesis that urbanization affects 

differentially the distribution of these four species, and that the impact of urbanization 

depends on the scale considered. 

 

METHODS 

Biological model, study area, and sampling scheme 

We collected one worker ant per colony sample in 19 sampling zones which were 

at least 20 km apart and comprised cities with their adjoining peri-urban and rural areas 

(Fig. 1). For each sampling zone, 30 colony samples were collected homogeneously 

throughout contiguous urbanized areas (as defined by the classes 1.1.1, 1.1.2 and 1.2.1 in 

Corine Land Cover 2012; CLC 2012©, Copernicus (https://land.copernicus.eu/)) and 60 

colony samples were collected homogeneously along a 15 km-long  3 km-wide transect 

to the east of the urbanized areas. The 1:100,000 scale of Corine land cover data lumps 

small agricultural and semi-natural patches with artificialized surfaces and therefore does 

not allow analyses of the impact of urban gradients on species distribution but ensured 

that a representative diversity of habitats was sampled in the study. For each sample 
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collected, the occurrences of main components of microhabitats within a radius of 1 m 

around the nest (Fig. 1) were recorded and classified into nine categories: (1) full soils 

with vegetation (e.g. grass, herbaceous plants), (2) pavements (concrete and impervious 

coating), (3) unstabilized material (sand, gravels), (4) trees or roots, (5) litter (leaves, plant 

debris, woodchips), (6) curb (i.e. along granite or concrete slabs), (7) buildings or walls, 

(8) individual features (e.g. stones, rocks, lamp posts or any other material which can 

support a nest), (9) slopes (e.g. ditches, banks). Among these nine microhabitats, 

categories (2), (6) and (7) are classically considered as urban whereas categories (1), (4) 

and (5) are typically related to nonurban settings. Categories (3), (8) and (9) can be found 

in either urban or nonurban environments. Sampling was conducted in 2015 and 2016 

from April to September on non-rainy days with temperatures ranging from 16 to 28°C, 

with a minimum distance of 200 m between two sampled colonies. Sampling was 

performed by teams of two persons conducting a direct search for Tetramorium nests 

followed by hand collection with an entomological aspirator. Collected ants were stored 

in 96% ethanol. Individuals from 1710 colonies were collected for this study and 

deposited as voucher material in the collection UCBLZ, CERESE, Université de Lyon, 

Université Claude Bernard Lyon1. Cordonnier et al. (accepted) identified the sampled 

species based on mitochondrial DNA barcoding and genotyping at 14 microsatellite 

markers. Among the identified species, the present study focuses on 1397 samples 

corresponding to the four most abundant Tetramorium species in the study area (i.e., with 

at least 60 sampled colonies): T. immigrans (n = 544), T. caespitum (n = 698), T. 

moravicum (n = 60), and T. semilaeve (n = 95). 
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Figure 1. Experim
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Spatial data 

Landcover maps were obtained by pixel-based classification method using ArcGIS v.10.1 

and ENVI 5.2. SPOT6 imagery (spatial resolution: 1.5 m; spectral band: R, G, B, NIR) 

obtained by GEOSUD EQUIPEX were used to identify impervious (e.g., building, roads 

and parking lots) and pervious surfaces (e.g., vegetated areas, bare soil and water) based 

on spectral index NDVI (Normalized Difference Vegetation Index), DVI (Differential 

vegetation Index), and BSI (Bare Soil Index). We used external data for the Lyon area 

(BDTOPO  2013, Graphic Parcel Register (RPG2012); French National Geographic 

Institute IGN) to pre-classify SPOT imagery. The urban context was calculated as the 

proportion of impervious surfaces in three buffers around each nest: a 10 m radius buffer 

(area ensuring to include the total nest territory; Brian et al., 1974), a 30 m buffer 

representing the foraging area and potential biotic interactions, and a 500 m buffer 

representative of the landscape area of influence (Fig. 1). 

 

Analyses 

First, run tests (Sokal & Rohlf 1995) computed using PAST v3.12 software (Hammer et 

al., 2001) were used to ensure that the nine microhabitat variables and the three urban 

buffer variables were randomly distributed along the latitudinal gradient; i.e. that the 

patterns being analyzed were not attributable to other processes, e.g., linked to the climate 

gradient. We then selected the four microhabitat elements with at least 10% of 

occurrences (lmt1: vegetation, lmt2: pavement, lmt3: unstabilized material and lmt6: curb). 

The four species were tested for differences in the four microhabitat elements using PAST 

v3.12 software through an ANOSIM procedure (Clarke 1993) based on the Bray-Curtis 

distance with 99,999 permutations, using a simple Bonferroni correction. A SIMPER 

analysis (Clarke 1993) allowed for the computation of the relative contribution of each of 

the four microhabitat elements to the overall average dissimilarity (OAD) observed 

between the four species. ANOSIM analyses (Bray-Curtis distance, 99,999 permutations, 

simple Bonferroni correction) were finally computed for each microhabitat element to 

separately assess the effect of each of them in microhabitat differences between species. 
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To establish a set of uncorrelated variables for the proportions of impervious surfaces 

(variables u10, u30 and u500 for the 10 m, 30 m and 500 m buffer), we ran a collinearity 

analysis, eliminating the u30 variable as the Spearman correlation value was >0.7 with 

both u10 and u500 (Online Resource Fig. 1 and Fig. 2). Habitat selection for each species 

was assessed with generalized logistic linear models to investigate the effect of 

urbanization on the presence of each species at different spatial scales using the package 

lme4 (Bates et al. 2014) in R v. 3.3 software (R Development Core Team 2004). These 

models treated species presence in the sampling site as a repeated measurement of species 

occurrence (presence = 1, absence = 0). The percentages of impervious area in the 10 m 

and 500 m buffers around the nest (u10 and u500) and the microhabitat elements 

previously identified as relevant by ANOSIM+SIMPER analyses (lmt1: vegetation, lmt2: 

pavement; see results for details) were introduced as explanatory terms in the fixed part of 

the model. To select the best model, we used the Bayesian Information Criterion (BIC) 

that selects for the most consistent and parsimonious model (Aho et al. 2014). Model 

parameters were then estimated through a model averaging procedure on models with  

weight BIC = 0.95, using the MuMIn package (Bartoń 2016) (Burnham & Anderson 

2004). The significance of each explanatory term was tested using a Wald test on the full 

model and looking at confidence intervals on the estimates. Homoscedasticity, 

independence and normality of residues were checked for each model.  

 

RESULTS 

The ANOSIM analysis based on the four selected microhabitat elements revealed a 

significant global difference in species microhabitats (R = 0.031, p  10-5) mainly driven 

by a significant difference between the sites with T. immigrans and those with T. 

caespitum (p = 0.0006; Fig. 2).  
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Figure 2. Proportions of sites with each microhabitat element in the four studied 
Tetramorium species. Different letters indicates significant differences in microhabitats 
between species according to global ASOSIM analysis after simple Bonferroni correction 

 

According to the SIMPER analysis, the four tested elements contribute to the 

overall average microhabitat dissimilarity between species (OAD) in broadly similar 

ways, with relative contributions to OAD ranging from ~18% to ~30% (Table 1). 

 
Table 1. SIMPER analysis average dissimilarities and percentage of contribution of each 
microhabitat element to the observed overall average dissimilarity between Tetramorium 
species’ microhabitats 
 

Microhabitat element Av. dissimilarity Contribution to OAD (%) 
lmt2: Pavement 12.35 29.96 
lmt3: Unstabilized material 12.29 29.81 
lmt6: Curb 9.264 22.46 
lmt1: Vegetation 7.322 17.76 

 

The separate ANOSIM analyses on each microhabitat element are significant only for the 

presence of full soil with vegetation (lmt1: R = 0.0338, p = 10-4) and pavement (lmt2: R = 

0.0153, p = 10-4). The post-hoc contrast analyses revealed a significant difference in 

relative occurrence of the vegetation element between sites with T. immigrans and sites 

with T. caespitum (p = 0.0006), as well as in relative occurrence of the pavement element 

between sites with T. immigrans and sites with T. caespitum (p = 0.0006), T. moravicum 

(p = 0.0222) and T. semilaeve (p = 0.0042) (Fig. 3). 
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Figure 3. Proportions of sites with vegetation (lmt1; left) or pavement (lmt2; right) for 
the four studied Tetramorium species. Different letters indicates significant differences in 
relative occurrence of microhabitat elements according to ANOSIM analysis after simple 
Bonferroni correction 
 

Model averaging over the 95% confidence set of best-ranked logistic models allowed the 

selection of different models for the four studied species (see Online Resource Table 1 

for detailed list of models). The Wald tests computed on parameter estimates for these 

models revealed that the presence of T. semilaeve was not associated with any of the 

tested variables. Urbanization at landscape scale (500 m buffer) was the only variable that 

negatively affected the presence of T. moravicum (est. = -0.0484, z = 3.944, p = 8.03-05). 

The presence of T. caespitum was negatively associated with urbanization at landscape 

scale (500 m buffer; est. = -0.0195, z = -7.149, p = 8.72-13) but positively associated with 

sites with local-scale vegetation (1 m buffer; est. = 0.8547, z = 5.045, p = 4.54-07). Finally, 

the presence of T. immigrans was significantly explained both by presence of 

urbanization at landscape scale (500 m buffer; est. = 0.0237, z = 8.693, p < 2 10-16) and 

absence of local-scale vegetation (1 m buffer; est. = -0.8597, z = -5.316, p = 1.06 10-07). 

All these results are summarized in Fig. 4. 
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Figure 4. Schematic representations of filters endured by Tetramorium species in the 
study area. An arrow indicates a significant positive impact of variables linked to 
urbanization at the considered scale. A cross indicates a significant negative impact of 
variables linked to urbanization at the considered scale 
 

 

DISCUSSION 

The species studied here respond to landscape patterns at fine spatial scale as both 

vegetation and pavement presences have been identified as factors shaping species’ 

occurrence. Microhabitats therefore appear to significantly influence species presence, as 

suggested in Mehrabi et al. (2014). Nevertheless species distributions were not shaped by 

fine-scale factors only, according to the results from model averaging. The occurrences 

of T. caespitum and T. immigrans simultaneously depended on urbanization at the 

landscape and local scales, with T. caespitum avoiding urban microhabitats (pavement, 

curb) and impervious habitats in the 500 meters surrounding the nest, whereas T. 

immigrans favored them. These scaling impacts of urbanization were species-dependent 

as T. moravicum was only associated with nonurban landscapes and T. semilaeve showed 

no association whatever the tested variables. As also suggested by Thogmartin & Knutson 

(2007) for birds, species-habitat relationships of the studied Tetramorium species respond 

to factors at multiple spatial scales. These results highlight the importance of considering 

several spatial scales simultaneously to study the impact of urbanization on species 
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distribution patterns. McIntyre (2000) had already pointed out how little was understood 

about the mechanisms accounting for distribution and abundance patterns of urban 

arthropods. Only five of the 300 papers reviewed by McDonnell & Hahs (2008) addressed 

the measures used to quantify the urbanization gradient itself and only fifteen investigated 

cryptic organisms, highlighting the lack of investigation regarding these topics. These 

findings remain of immediate relevance. McGarigal et al. (2016) reviewed studies on 

habitat selection between 2009 and 2014 and concluded that the majority of habitat 

studies were still not using a multi-scale framework, and very few evaluated 

environmental variables across different grains. These authors nevertheless confirmed 

that distinct species select habitats at different scales, and therefore suggested to use 

multi-scale approaches, encouraging the use of generalized linear models and model 

selection methods based on Information Criteria to model different scales of habitat 

selection. Building on these studies, the present work contributes to untangling the effects 

of scales in studies of species distribution in response to urbanization processes.  

The highly contrasted responses to urbanization observed between Tetramorium 

immigrans and T. caespitum may be indicative of niche partitioning processes driven by 

urbanization between these two species. Among the species studied, T. immigrans is the 

only one clearly associated with urban areas where it faces a modified habitat dominated 

by human-made structures, exhibiting thermal, pedological and hydrologic conditions 

that markedly depart from those of nearby natural areas (reviewed by Forman 2014). In 

urban habitats, T. immigrans exploits anthropogenic resources (here pavement) and could 

therefore be categorized as an urban exploiter or synanthropic species (McKinney 2006; 

Forman 2014). Pavement plays a very important role in the urban thermal balance as it 

absorbs solar and infrared radiation and dissipates part of the accumulated heat through 

convective and radiative processes (Santamouris et al. 2011). At the microhabitat scale, 

pavements could therefore offer to T. immigrans an alternative form of shelter in urban 

environments (Lowry et al. 2013), providing warmer nesting areas than microhabitats 

with vegetation cover only, which could give T. immigrans an advantage if these warmer 

temperatures actually offered a wider annual time-window than species inhabiting 

vegetated microhabitats such as T. caespitum. Wagner et al. (2017) showed that winged 

reproductive alates of T. immigrans were found in nests between March, 17 and 

September, 29, whereas reproductive alates of T. caespitum were present in nests between 
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May, 28 and August, 19, which corroborate the hypothesis of a larger phenological niche 

for T. immigrans. Wagner et al. (2017) indicated that contrary to T. immigrans, T. 

caespitum builds soil mounds higher than 10 cm. Although they are costly to build (e.g., 

Mikheyev et al. 2004), domes intercept incident solar radiation, therefore maintaining 

ideal thermal conditions in the nest (Kasimova et al. 2014). The anthropized habitats of 

T. immigrans may allow this species to overcome the construction of such structures by 

nesting in microhabitats generating sufficient heat. Grant et al. (2011) evidenced that 

amphibian and reptile species that persist in urban habitats tend to have broad diet 

requirements, high mobility and reproductive capacity, small body size and tolerance to 

human disturbance. Tetramorium ant species have similar body sizes according to their 

respective cephalic sizes: T. immigrans: 834 ± 56 [713, 943] μm; T. caespitum: 761 ± 50 

[591, 867] μm (Wagner et al., 2017); T. moravicum: 878 ± 41 [807, 951] μm (Schlick-

Steiner et al. 2005); T. semilaeve: 707 ± 36 [622, 760] μm (Borowiec et al. 2015); 

therefore, size alone probably cannot generate strong differences in habitat preferences 

between these species. Concepción et al. (2015) showed that urban expansion especially 

impacts highly mobile and specialized butterfly species, which were negatively affected 

by urban areas even at great distances. However, very little is known about the diet, 

dispersal abilities, reproductive fitness, and responses to human disturbance in these 

species. In-depth investigation of these traits should uncover the drivers of their habitats 

preferences. 

The results of the present study could have indirect applications and interest for 

further studies. For instance, Menke et al. (2011) showed that urban environments may 

facilitate the movement of ant species adapted to warmer and drier environments and 

suggested that urban adapted ants may be particularly successful at tracking future climate 

change. Tetramorium immigrans should therefore be further investigated from a climate 

change perspective as it could be a highly relevant species to study species and organism 

responses facing global climate warming. Munshi-South & Kharchenko (2010) showed 

that the urban white-footed mouse, Peromyscus leucopus, exhibited little genetic structure 

in natural areas over even regional scales but strong genetic structuration in New York 

City populations, suggesting that urbanization is a strong driver of genetic differentiation 

compared to natural fragmentation. As far as the ant species studied here are concerned, 
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compared genetic structures and diversities at the urban scales identified as relevant 

should allow a more precise quantification of the impacts of urbanization. 

This study used an effective method to study the multi-scale impacts of 

urbanization on the distribution of four Tetramorium species by investigating spatial 

scales from urban microhabitat to urban landscape. It showed that the four species of 

interest presented distinct response to urbanization. As T. immigrans was particularly 

associated with urban areas, monitoring the dynamics of its distribution range should 

provide insightful information into the impact of urbanization on species presence and 

distribution. In addition, as urbanization could enhance the climate change signal at the 

local scale, we suggest simultaneously considering the impact of urban land use and 

climate in subsequent studies about drivers of species presence and distribution. Factors 

such as stress tolerance (e.g., resistance to extreme temperatures and/or to dry conditions) 

should also be taken into account, as well as the role of competition in structuring ant 

assemblages. 
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SUPPORTING INFORMATION 

 
Figure S1. Correlation coefficients between percentages of impervious surfaces in 10, 30 

and 500 m buffers around sampled colonies 

 

 

 
Figure S2. Percentages of impervious surfaces in 10, 30 and 500 m buffers around 

sampled colonies)  
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Table S1. Model selection tables for each species (models ranked by increasing BIC-

value) 

 

Tetramorium semilaeve 
   (Intrc) pvmnt      u10     u500 vgttn df   logLik   BIC delta weight 
1   -2.616                                1 -343.258 693.7  0.00  0.688 
2   -2.427     +                          2 -341.598 697.7  3.91  0.097 
3   -2.842       0.005062                 2 -341.737 697.9  4.19  0.085 
4   -2.674     + 0.007263                 3 -338.750 699.2  5.44  0.045 
5   -2.732                0.005454        2 -342.620 699.7  5.95  0.035 
9   -2.693                             +  2 -343.216 700.9  7.14  0.019 
6   -2.560     +          0.010100        3 -339.722 701.1  7.39  0.017 
11  -3.021       0.005398              +  3 -341.543 704.8 11.03  0.003 
10  -2.437     +                       +  3 -341.597 704.9 11.14  0.003 
7   -2.857       0.004534 0.001810        3 -341.683 705.1 11.31  0.002 
8   -2.702     + 0.005801 0.005937        4 -338.224 705.4 11.62  0.002 
12  -2.792     + 0.007444              +  4 -338.671 706.3 12.52  0.001 
13  -2.881                0.005949     +  3 -342.483 706.7 12.91  0.001 
14  -2.655     +          0.010330     +  4 -339.670 708.3 14.51  0.000 
15  -3.053       0.004766 0.002244     +  4 -341.462 711.8 18.10  0.000 
16  -2.848     + 0.005957 0.006164     +  5 -338.107 712.4 18.62  0.000 
 
Tetramorium immigrans 
    (Intrc) pvmnt        u10    u500 vgttn df   logLik    BIC  delta weight 
13 -0.23810                  0.02367     +  3 -855.935 1733.6   0.00  0.861 
14 -0.33660     +            0.02196     +  4 -854.409 1737.7   4.18  0.107 
15 -0.19860       -1.126e-03 0.02456     +  4 -855.744 1740.4   6.85  0.028 
16 -0.28740     + -1.595e-03 0.02310     +  5 -854.032 1744.2  10.65  0.004 
5  -1.01100                  0.02592        2 -870.279 1755.0  21.46  0.000 
6  -1.11000     +            0.02379        3 -868.009 1757.7  24.15  0.000 
7  -1.01000       -4.156e-05 0.02595        3 -870.278 1762.2  28.69  0.000 
8  -1.09600     + -5.918e-04 0.02422        4 -867.955 1764.8  31.27  0.000 
10  0.08302     +                        +  3 -884.368 1790.4  56.87  0.000 
12 -0.08973     +  3.930e-03             +  4 -881.483 1791.9  58.32  0.000 
11  0.12720        5.590e-03             +  3 -888.848 1799.4  65.82  0.000 
9   0.44630                              +  2 -895.201 1804.9  71.30  0.000 
4  -0.97100     +  5.312e-03                3 -899.207 1820.1  86.54  0.000 
2  -0.80320     +                           2 -904.754 1824.0  90.41  0.000 
3  -0.77580        7.244e-03                2 -908.678 1831.8  98.25  0.000 
1  -0.46620                                 1 -920.040 1847.3 113.75  0.000 
 
Tetramorium caespitum 
     (Intrc) pvmnt        u10     u500 vgttn df   logLik    BIC delta weight 
13 -0.354700                  -0.01953     +  3 -907.669 1837.0  0.00  0.943 
15 -0.388300        9.741e-04 -0.02032     +  4 -907.517 1844.0  6.93  0.030 
14 -0.340100     +            -0.01925     +  4 -907.630 1844.2  7.15  0.026 
16 -0.372400     +  1.062e-03 -0.02004     +  5 -907.453 1851.1 14.03  0.001 
5   0.425900                  -0.02183        2 -921.172 1856.8 19.78  0.000 
6   0.452700     +            -0.02119        3 -920.971 1863.6 26.60  0.000 
7   0.426700       -3.014e-05 -0.02181        3 -921.172 1864.0 27.01  0.000 
8   0.449900     +  1.276e-04 -0.02129        4 -920.968 1870.9 33.83  0.000 
11 -0.650600       -4.514e-03              +  3 -930.189 1882.1 45.04  0.000 
10 -0.698900     +                         +  3 -930.733 1883.2 46.13  0.000 
9  -0.906100                               +  2 -934.550 1883.6 46.53  0.000 
12 -0.540900     + -3.641e-03              +  4 -928.112 1885.1 48.12  0.000 
3   0.246000       -6.049e-03                 2 -948.238 1910.9 73.91  0.000 
4   0.351000     + -4.924e-03                 3 -944.998 1911.7 74.66  0.000 
2   0.199700     +                            2 -950.023 1914.5 77.48  0.000 
1  -0.005797                                  1 -956.537 1920.3 83.28  0.000 
 
Tetramorium moravicum 
   (Intrc) pvmnt       u10     u500 vgttn df   logLik   BIC delta weight 
5   -2.485                 -0.04895        2 -229.584 473.6  0.00  0.876 
7   -2.359       -0.006809 -0.04113        3 -228.562 478.8  5.19  0.065 
6   -2.532     +           -0.05037        3 -229.467 480.6  7.00  0.026 
13  -2.303                 -0.04998     +  3 -229.480 480.7  7.02  0.026 
8   -2.418     + -0.007270 -0.04263        4 -228.325 485.6 11.94  0.002 
15  -2.102       -0.007133 -0.04216     +  4 -228.372 485.7 12.04  0.002 
3   -2.598       -0.015500                 2 -236.327 487.1 13.49  0.001 
14  -2.355     +           -0.05132     +  4 -229.372 487.7 14.04  0.001 
16  -2.165     + -0.007583 -0.04364     +  5 -228.144 492.4 18.81  0.000 
4   -2.571     + -0.015190                 3 -236.290 494.3 20.64  0.000 
11  -2.596       -0.015500              +  3 -236.327 494.3 20.72  0.000 
1   -3.109                                 1 -243.706 494.6 21.02  0.000 
2   -2.933     +                           2 -242.790 500.0 26.41  0.000 
9   -3.342                              +  2 -243.475 501.4 27.78  0.000 
12  -2.560     + -0.015200              +  4 -236.290 501.5 27.87  0.000 
10  -3.117     +                        +  3 -242.665 507.0 33.39  0.000 
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« Ultimately we need to recognize that while 
humans continue to build urban landscapes, 

we share these spaces with other species » 
David Suzuki, 2012 
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PAPER 3. Urbanization-climate interactions promote the expansion of species 

ranges: a case study in the invasive pavement ant Tetramorium immigrans  
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Abstract 

1- Global changes, such as climate and urbanization, are widely studied as they have 
global implications for people and ecosystems. Global changes are strongly entwined 
and aggravated by the development of human activities, which also intensifies the 
human-mediated dispersal of species. However, few studies have explicitly considered 
the combined influence of urbanization and climate change on species expansion. 

 
2- As anthropogenic introductions are common in cities and occur in numerous 

ecologically impactful ant species, we investigated the combined roles of climate, 
urbanization and human mediated dispersal in the expansion of Tetramorium 
immigrans, an invasive pavement ant in North America, in urban areas of South-
eastern France where it is supposed native.  

 
3- A total of 544 T. immigrans individuals were sampled from 16 urban gradients and 

genotyped at 14 microsatellite markers. We combined molecular ecology methods 
(Bayesian and frequency-based analyses), and statistical modelling to evaluate the 
impact of interaction between climate and urbanization on the pavement ant 
distribution patterns.  

 
4- The occurrence probabilities of T. immigrans depended on the interaction between 

climatic and urban factors. Two latitudinally distinct clusters of T. immigrans were 
hierarchically structured in two sub-clusters each, suggesting different colonization 
histories. Strong founder effects indicated introductions from external sources 
followed by colonization favoured by human activities in the northern urban areas. 

  
5- The effect of climate-urbanization interaction on species distribution, an interaction 

between two global changes mostly overlooked in the literature, was clearly 
evidenced, suggesting that in the north of its range, T. immigrans thrives under harsher 
climate by colonizing the most urbanized areas. Many taxa may conform to such 
pattern, making the combined study of global changes a necessary challenge for future 
studies. Distribution patterns concurred with similar observations in the invasive range 
of T. immigrans, making it likely that it may not be native to South-eastern France, at 
least in the northernmost urban areas. Cryptic invasions or discreet range shifts are 
likely to occur in many taxa, especially in ants, and deserve increased attention from 
researchers and managers alike. 

 
Keywords: Biological invasion, Climate changes, Pavement ant, Species expansion, 

Tetramorium immigrans, Urbanization 
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INTRODUCTION 

Urbanization is a global change of high magnitude and speed, which deeply impacts 

biodiversity (Grimm et al., 2008). Urban climates differ from surrounding natural areas 

because of the Urban Heat Island effect (Grimm et al., 2008), affecting species 

distributions and biotic interactions (Parris & Hazell, 2005; Youngsteadt et al., 2015). 

Many plant and animal species in cities have been therefore documented outside their 

natural climatic range (Youngsteadt et al., 2015). Climatic conditions however are a major 

determinant of the natural distribution of species, with evidence both from the fossil 

record (Escarguel, Fara, Brayard & Legendre, 2011) and from recently observed trends 

(Parmesan & Yohe, 2003), and therefore remain crucial in determining species 

distributions, even in cities (Aronson et al., 2016). Few studies explicitly considered this 

combined influence of urbanization and global climate change when investigating the 

impacts of climate change in the context of global land use changes (Diamond et al., 

2014). In urban areas, species composition is shaped by hierarchical series of filters 

including regional climate and biogeography, land use and human mediated biotic 

interchange, urban form and development history, local human facilitation as well as 

species interactions (Aronson et al., 2016). Urban biological communities have been 

filtered from the regional species pool, but also from a global pool of species transported 

by human activities, either intentionally or not, which find suitable habitats within urban 

areas (Aronson et al., 2016). Marzluff, Bowman and Donnelly (2001) evidenced an 

upward trend in the proportion of non-native species (i.e., species that did not occur before 

importation by humans) toward the urban core. Numerous studies have further shown that 

urbanization promotes the replacement of native species by non-native ones (McKinney, 

2006). This increasing non-native species richness could be due to (i) an increased rate of 

introduction of non-native individuals, e.g., due to accidental or intentional transport for 

human use, and (ii) to the presence of favorable habitats for the establishment of non-

native species, according to the “niche opportunity” concept (Shea & Chesson, 2002) 

where a combination of resources, fewer natural enemies and environmental conditions, 

including their fluctuations in time and space, improve habitability for the invader 

(McKinney, 2006). 
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Among the fauna present in highly urbanized environments, ants (Formicidae) are 

easily transported outside of their native habitat through global scale human trade 

(McGlynn, 1999) and most studies published so far have shown the dominance in cities 

of ant species introduced by humans (Heterick, Lythe & Smithyman, 2013; Vonshak & 

Gordon, 2015; but see Gippet et al., 2017). The urban-adapted ant assemblages comprise 

species with biogeographic distributions that differ from those found in natural or rural areas 

and these species tend to have ranges that extend into areas with both drier and warmer 

climates (Menke et al., 2011). The present study focusses on Tetramorium immigrans in 

France. Tetramorium immigrans is an invasive species in North America, where it was 

introduced in cities in the 19th century or earlier (Steiner et al., 2006, 2008a). In France, 

a previous study in the Lyon urban area showed that T. immigrans frequently occurs in 

fragmented and warmer areas habitats, contrary to its phylogenetically closest species in 

the same area, T. caespitum (Gippet et al., 2017). We used an individual-based sampling 

scheme (Prunier et al., 2013) to collect 544 individual samples of T. immigrans from 16 

urban landscape gradients in the Rhône valley (France), and applied landscape genetic 

tools based on nuclear DNA (14 microsatellite markers) and semi-automated 

interpretation of SPOT 6 imagery to investigate the impact of interaction between climate 

change and urbanization on the expansion of T. immigrans. As suggested by Diamond, 

Dunn, Frank, Haddad and Martin (2015) for insects, we expected that at higher latitudes, 

the niche of T. immigrans should narrow towards urban core areas. Using linear mixed 

models, we therefore tested the hypothesis that T. immigrans occupancy in the study area 

would depend on climate and urbanization, but also on their interactions. In addition, 

given the invasive status of T. immigrans in cities of North America (Steiner et al., 2006, 

2008a), its presence in highly fragmented  areas in France (Gippet et al., 2017), and as 

anthropogenic introductions are very common in urbanized area (Marzluff et al., 2001; 

McKinney, 2006; Cristescu, 2015; Youngsteadt et al., 2015; Aronson et al., 2016) and 

very common in ants (McGlynn, 1999; Heterick et al., 2013; Vonshak & Gordon, 2015), 

we examined here the role of human-mediated dispersal in the introduction of this species 

in urban areas. We therefore studied the impact of urbanization on the genetic 

structuration of this species. In the case of a northwards gradual expansion, such as post-

glacial recolonization, we expected a linear differentiation pattern, with clues of more 

pronounced founder effects in the colonization front. The opposite hypothesis, which 
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would support a colonization favoured by human activities could result in situations 

characterized by latitudinally distinct sub-clusters hinting at different colonization 

histories, by nonlinear patterns in fixation indices or by reduction in population sizes 

suggestive of human mediated introduction. 

 

METHODS 

Biological model, study area and sampling scheme 

Tetramorium immigrans was sampled in 16 urban landscapes along a steep climatic 

gradient crossing the boundary between the European Continental and Mediterranean 

biogeographical areas extending from the city of Chalon-sur-Saône in the North (46° 78′ 

99″ N, 4° 85′ 11″ E) to the city of Tarascon in the South (43° 48′ 21″ N, 4° 39′ 37″ E). In 

all 16 sampling zones, individuals belonging to the genus Tetramorium were collected in 

2015 and 2016 from April to September on non-rainy days with temperatures ranging 

from 16 to 28°C from 30 locations distributed homogeneously throughout contiguous 

urbanized areas (as defined by the classes 1.1.1, 1.1.2 and 1.2.1 in Corine Land Cover 

2012) and 60 locations samples distributed homogeneously along a 15 km long and 3 km 

wide transect to the east of the urbanized areas, leading to a total of 1436 sampled 

colonies, with a minimum distance of 200 m between two colonies. Collected ants were 

stored in 96% ethanol. Samples were deposited as voucher material in the collection 

UCBLZ, CERESE, Université de Lyon, Université Claude Bernard Lyon1. Individuals 

were identified to the species level using both morphology and genetics (barcoding based 

on mitochondrial DNA and genotyping at 14 microsatellite markers), resulting in the 

preliminary removal of 285 colonies whose species identity could not be determined 

unambiguously (Cordonnier, Bellec, Dumet, Escarguel and Kaufmann, 2018). 

Tetramorium immigrans was present in 544 and absent in 607 locations from the 16 

sampling zones. DNA of the 544 T. immigrans individuals was extracted from whole 

individuals which were crushed and then mixed with 150 μl of Chelex 100 and 10 μl of 

proteinase K (15 mg ml-1) at room temperature; the solution was incubated at 55 °C 

overnight (Casquet, Thebaud & Gillespie, 2012).  DNA was genotyped at 14 of the 

microsatellite loci developed by Steiner, Arthofer, Schlick-Steiner, Crozier, and Stauffer 

(2008b) organized in three multiplex PCR mixes. All three mixes had a total volume of 

10 μl with 1X MasterMix (kit type-it microsatellite PCR Qiagen no. 206246) and 2 μl 
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DNA. Detailed quantities of each primers in each mix can be found in Cordonnier et al. 

(2018). Amplifications consisted in 5 min at 95 °C, then 32 cycles (30 s at 95 °C, 90 s at 

60 °C, 30 s at 72 °C), and 30 min at 60 °C. All PCR products were analyzed with an ABI 

3730xl sequencer (service provided by Genoscreen, Lilles, France). Electropherograms 

were read and interpreted with Genemarker 1.95 (Softgenetics, State College, PA, USA). 

Statistics (expected and observed heterozygosity, allelic richness, Fis, Hardy-Weinberg 

Equilibrium HWE) of microsatellite markers were computed using GENALEX (Peakall 

and Smouse, 2006) (Supporting information Table S1) in reconstructed populations 

defined by Bayesian clustering (explained below).  
 

Spatial data 

Landcover maps were obtained by pixel-based semi-classification using ArcGIS 

v.10.1 , ESRI, Redlands, CA, USA and ENVI 5.2 , Exelis Visual Information 

Solutions, Boulder, CO, USA. SPOT6 imagery (spatial resolution: 1.5m; spectral band: 

R, G, B, PIR) were used to identify impervious (e.g., building, roads and parking lots) 

and pervious surfaces (e.g., vegetated areas, bare soil and water) based on spectral index 

NDVI (Normalized Difference Vegetation Index), DVI (Differential vegetation Index) 

and BSI (Bare Soil Index). We used external data for the Lyon area (BDtopo  IGN 2013, 

Graphic Parcel Register (RPG, 2012)) to pre-classify SPOT imagery. The urban context 

was calculated as the proportion of impervious surfaces in a 500m buffer around each 

nest. Latitudes (WGS84) as proxy for temperature in the climatic gradient along the Saône 

and Rhône valleys (Joly et al., 2010) were log-transformed and scaled to reduce the 

influence of extreme values and improve model convergence. 
 

Analyses 

We used logistic linear mixed model to investigate the effect of latitudinal position 

and urban context on the presence of T. immigrans in study area using package lme4 

(Bates, Maechler, Bolker & Walker, 2014) in R v. 3.3 software (R Development Core 

Team, 2016). This model treated species presence in the sampling site (presence = 1, n = 

544; absence = 0, n = 607) as a repeated measurement of species occurrence. Sampling 

zones (n = 16 urban landscape gradients) were introduced in the model as a random effect. 

The latitude of each nest (LWGS84), the percentage of impervious area in a 500m buffer 

around the nest (I500), and the interaction between them (LWGS84: I500) were 

introduced as explanatory terms in the fixed part of the model. This model was then used 
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for parameter estimates, the significance of each explanatory term was tested using a 

Wald test and looking at confidence intervals on the estimates. Homoscedasticity, 

independence and normality of residues were checked for each model.  

To determine the number of genetically homogeneous groups using microsatellite 

data, we used the Bayesian clustering algorithm implemented in the software 

STRUCTURE v. 2.3.1 (Pritchard, Stephens & Donnelly, 2000) based on the admixture 

model with correlated allele frequencies and LOCPRIOR model with sampling zone as 

prior location of samples (Hubisz et al., 2009), and with a number of a priori unknown 

clusters (K) varying from K = 1 to K = 16 (i.e. the number of sampling zones), with 10 

iteration runs for each K-value. Each run consisted in 500,000 replicates of the MCMC 

after a burn-in of 500,000 replicates. To investigate the 10 independent runs, clustering 

results were analyzed using CLUMPAK (Kopelman et al., 2015) based on a Markov 

clustering algorithm which groups sets of highly similar runs into modes and separates 

these distinct groups of runs to generate a consensus solution for each distinct mode. For 

any given K, the different runs were either consensual with a single mode or resulting in 

both a majority mode consisting of most of the iterations and one or more minority modes 

consisting in the remaining iterations. CLUMPAK was then used to identify an optimal 

ordering of inferred clusters across different values of K, and to define the optimal K-

value using the method of Evanno, Regnaut and Goudet (2005). The mean of the 

logarithm of the data probabilities and associated per K variance were calculated using 

Structure Harvester (Earl, 2012). The most conservative value of K compatible with these 

different elements – concordance between runs, Evanno et al.’s (2005) method and mean 

lnP(K) – was retained. The membership coefficient of each individual at each of the K 

clusters corresponding to the consensus solution of the majority mode was selected as Q-

value. At each hierarchical level, individuals were grouped assuming a membership 

coefficient of at least 50% to belong to a cluster (Balkenhol et al., 2014). The same 

process was then separately iterated hierarchically within each cluster to measure sub-

structuring within the identified clusters. All parameters remained identical except for the 

maximum number of clusters tested which systematically corresponded to the number of 

sampling zones involved in the hierarchical level. We considered that a cluster was 

genetically homogeneous when no individuals in this cluster had a Q-value greater than 

0.9 at the next hierarchical level. 
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We further evaluated clustering results with classical frequency-based approaches 
by computing Nei’s distances between sampling zones using GENETIX (Belkhir, 1999), 
then performing a Principal Coordinates Analysis (PCoA, PAST v. 3.18; Hammer, 
Harper & Ryan, 2001) to graphically represent the distance matrix, with a superimposed 
Kruskal tree to visualize the minimum crossing path. Only the 11 sampling zones with at 
least 15 samples were used in pairwise distance calculations. To assess differentiation 
between clusters defined using hierarchical Bayesian clustering, pairwise FST were 
calculated between cluster pairs using GENALEX (Peakall & Smouse, 2006). 

Garza-Williamson’s M ratios (Garza & Williamson, 2001) were calculated in each 
genetically homogeneous cluster to test for bottlenecks. In cases where population have 
recovered and pre-bottleneck population sizes were large, using M-ratios is the most 
pertinent method to detect bottlenecks that have lasted for several generations 
(Williamson-Natesan, 2005). The M ratio is the ratio between the number of alleles and 
the range in allele size (number of expected alleles) observed at a microsatellite locus, 
averaged over loci. The observed M ratio for each population was compared to the lower 
5% tail of the critical ratio (MC) distribution generated by Critical_M program (Garza & 
Williamson, 2001), which requires three parameters: θ = 4 Ne * μ (where Ne = effective 
population size and μ = mutation rate), Δg (mean size of non-one-step mutations) and ps 
(the per cent of one-step mutations). We used the parameter values Δg = 3.5 and ps = 0.2 
as recommended by Garza and Williamson (2001) and following previous studies on ants 
(Ugelvig et al., 2008; Yang et al., 2012; Sanllorente, Ruano & Tinaut, 2015). The 
mutation rate was set at μ = 10-4/locus/generation, which is the most commonly used 
mutation rate for microsatellite loci in ants (Ugelvig et al., 2008). The pre-bottleneck 
value θ = 4 Ne * μ was varied from the lowest value recorded in the literature (0.1; 
Ugelvig et al., 2008) to the highest value recorded in the literature (10; Yang et al., 2012), 
therefore testing θ equal to 0.01, 0.1, 1, which correspond to effective population sizes of 
25, 250, 2500 and 25000 respectively. For each sub-cluster and each set of parameters, 
an equilibrium population was simulated 10,000 times using these parameter settings. 
Hierarchical Bayesian clusters with an observed M ratio under the MC threshold were 
considered having experienced a recent bottleneck (i.e. over the last hundred generations; 
Garza and Williamson 2001). Last, mean rarefied numbers of alleles (Nar) were 
calculated using HP-RAR for each cluster (Kalinowski 2005) and an analysis of variance 
with Tukey pairwise multiple contrasts on paired data has been used to compare genetic 
richness between hierarchical Bayesian clusters. 
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RESULTS 

Occupancy in T. immigrans is greater in the south (logistic linear mixed model, 

est. = -0.7748; z = -2.085; Pr(>|z|) = 0.0371), and in urban areas (est. = 0.8741; z = 9.660; 

Pr(>|z|) < 2* 10-16; Table 1). The interaction between latitude and percentage of 

impervious area in a 500m buffer around the site is also a significant factor explaining 

species presence (est. = 0.3024; z = -3.222; Pr(>|z|) = 0.0013). In other words, the 

probability of T. immigrans occurrence in urban areas increased with latitude. 

 

Table 1. Parameter estimates (Estimate), Wald test results (z value and significance of 
each explanatory term Pr(>|z|)), confidence intervals of the estimates (2.5%; 97.5%) and 
results of the likelihood test (F value) of the logistic linear mixed model.  

 

Bayesian clustering resulted in two hierarchical levels (Fig. 1), with two first level 

clusters (cluster A, n=166 and cluster B, n=378) divided respectively into two (sub-cluster 

A1, n=52 and sub-cluster A2, n=114) and three second-level clusters (sub-cluster B1, 

n=81, sub-cluster B2, n=210 and sub-cluster B3, n=57). B3 clearly corresponds to 

individuals with allelic frequencies intermediate between clusters A and B and with a 

membership coefficient close to 50% (Fig. 1), suggesting that individuals in this group 

do not correspond to a genetically distinct cluster. Some individuals (n = 30, on the right 

in Fig. 1) have maximal Q-values below 50% for all B sub-clusters, reflecting a mix 

between different sub-clusters. 

Clusters A and B are spatially structured along the latitudinal axis, their limits 

being located near the 7th sampling zone (Fig. 1). Similarly, sub-clusters A1 and A2, and 

B1 and B2 are separated between sampling zones 3 and 4 (A1-A2 limit) and 11 and 12 

(B1-B2 limit) (Fig. 1). All individuals which could not be placed in any B sub-clusters 

because of maximal Q values below 0.5 (right part of Fig. 1) are located at the B1-B2 

limit in Montélimar and correspond to individuals with intermediate allele frequencies 

between B sub-clusters. The contact zone between clusters A and B corresponds to the 

area where sub-cluster B3 has been found (Fig.1), confirming that this cluster is made up 

of individuals with intermediate allele frequencies between clusters A and B.  

 Estimate z value Pr(>|z|) 2.5 % 97.5 % F value 
I500 0.8741 9.660 < 2* 10-16 0.7009 1.0586 87.1897 
YWGS84 -0.7748 -2.085 0.0371 -1.5759 -0.0198 3.4876 
I500:YWGS84 0.3024 3.222 0.0013 0.1206 0.4925 10.7132 
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Finally, only 4 individuals were found in the northernmost sampling zones and 

were associated with geographically distant sub-clusters (2 A2 individuals and 2 B1 

individuals, Fig. 1); nevertheless, the low number of individuals sampled in that case 

precludes any reliable interpretation of these associations. 

 
Nei’s genetic distances between sampling zones strengthen the Bayesian 

clustering results (Fig. 2), including the intermediate position of individuals in the 7th 

(between A and B) and 12th (between B1 and B2) sampling zones. They also indicate that 

sampling zones belonging to sub-cluster A2 are genetically closer to B2 than to A1 and 

B1. Fixation indices (FST) between Bayesian clusters show that sub-clusters B1 and B2 

are genetically close, while A2 is closer to B2 than to A1 (Table 2). 

 
Figure 2. PcoA analysis based on Nei’s distances between the 11 sampling zones with at 
least 15 individuals. Links corresponds to the Kruskal tree. Colored ellipses correspond 
to four sub-clusters identified by clustering. The two first-axes explain 88% of the total 
variability. 
 

Table 2. Pairwise population FST values 
 
 
 
 
 

 A1 A2 B1 B2 
A1 - - - - 
A2 0.024 - - - 
B1 0.031 0.026 - - 
B2 0.028 0.017 0.009 - 
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Garza-Williamson’s M ratios obtained in all four sub-clusters were systematically 

below 0.6 while the lower 5% tail of the critical ratio always exceeds 0.6 for all effective 

population sizes used in simulations (Table 3), suggesting that all sub-clusters had 

experienced bottlenecks. M is lower in sub-clusters A1 and B1 whereas the critical value 

is stable in all sub-clusters, suggesting a stronger reduction in population size for A1 and 

B1 compared to A2 and B2. Rarefied number of alleles Nar differed between sub-clusters 

(p = 0.0052). Nar were higher in B1 compared to A1 sub-cluster (p = 0.0063) and slightly 

higher in B2 compared to A1 (p = 0.019) suggesting higher genetic diversity in southern 

sub-clusters compared to the northernmost sub-cluster.  

 

 

Table 3. Garza-Williamson’s M-ratio for each sub-cluster, with associated critical M 
values (Mc) for an effective size Ne between 25 and 25000. Nar is the average rarefied 
number of alleles found in each sub-cluster; sd the associated standard deviation. 

Population M-ratio Mc  
(Ne = 25) 

Mc  
(Ne = 250) 

Mc  
(Ne = 2500) 

Mc  
(Ne = 25000) 

Nar 

A1 0.461 0.798 0.786 0.711 0.658 11.00 
A2 0.498 0.799 0.787 0.714 0.693 12.19 
B1 0.457 0.799 0.790 0.714 0.679 13.33 
B2 0.502 0.800 0.787 0.715 0.712 13.06 

 

 

DISCUSSION 

This study investigated the impact of the interaction between climate and 

urbanization on the expansion of Tetramorium immigrans using a landscape genetics 

approach. Tetramorium immigrans presence in the study area depends on climate and 

urban context as well as on their interactions, with a higher occurrence probability of T. 

immigrans in cities with respect to countryside in the northern part of the study area. The 

spatial positioning of genetic clusters obtained by STRUCTURE (Bayesian clustering) 

analysis showed two latitudinally distinct clusters of T. immigrans (A in the north, B in 

the south), hierarchically structured in four genetically homogeneous sub-clusters. 

Individuals found with intermediate maximal membership values (i.e., <0.5) for all B sub-

clusters were found in a single sampling zone located between B1 and B2 clusters.  
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Similarly, sub-cluster B3 appear as a mix between A2 and B1 and therefore has not been 

considered as a genetically homogeneous population. Frequency-based approaches 

showed that population B1 and B2 are genetically close and that population A2 is 

genetically closer to B2 than to A1. Finally, the M-ratio reveal that A1, A2, B1 and B2 

all suffered from bottlenecks probably caused by one or several founder effects. Lower 

allelic richness in northern sub-clusters compared to southern ones might indicate long 

term effects of stronger bottlenecks north of the distribution. 

 

These results further evidence that the probability of occurrence of T. immigrans 

is higher in the southern part of the study area (Cordonnier et al., 2018). In addition, sites 

with T. immigrans were characterized by a higher percentage of impervious surfaces. 

However, no previous evidence suggested a significant interaction between these factors. 

Our results therefore reveal the effect of a mostly overlooked, when not simply ignored 

interaction between two global changes on species distribution, suggesting that in the 

north of its range, T. immigrans thrives under harsher climate by colonizing the most 

urbanized areas. This result is makes sense considering that most common species in 

heavily urbanized areas are more likely to have distributions that are skewed towards 

lower latitudes and, consequently, greater tolerance to dry conditions and warmer 

conditions than species found in more natural sites (e.g., Menke et al., 2011). The 

combined action of climate change and urbanization is clearly highlighted by this study 

and raises several conservation issues. In a perspective of accelerating global warming, 

the study of the colonization of urban areas could make it possible to anticipate the 

responses of some taxa to climate changes. Temperatures differences between urban 

environments and adjacent non-urban areas are often greater that the predicted global 

temperature change (Grimm et al., 2008). In addition, latitudinal gradients (from low to 

high latitudes) parallel the temperature profile in urban gradients (from urban cores to 

natural areas) because both low latitude and urban cores exhibit narrower temperature 

profiles characterized by increases in mean temperature when compared to high latitudes 

and natural areas respectively (Diamond et al., 2015). The originality of the present study 

is to consider both gradients simultaneously, a necessary perspective as the response of 

biodiversity to urbanization occur over regional scales, where variations in background 

climatic conditions play a key role (Diamond et al., 2015). 
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The observed pattern could reflect a relatively recent colonization of the northern 

part of the study area, subsequent to the 19th to 20th century urbanization at the origin of 

heat islands effects and increasing human trade. Following Menke et al.’s (2011) 

conclusions for urban ant communities in North Carolina, our results suggest that the 

urban heat island effect may have facilitated the establishment of T. immigrans in areas 

where climatic conditions were previously inhospitable. Introduction favoured by human 

activities would be the most likely hypothesis to explain this situation. That the species 

was almost only found in urban areas in the north of the study area strongly indicates one 

or more anthropogenic introductions, which are common in urbanized areas (Marzluff et 

al., 2001; McKinney, 2006; Cristescu, 2015; Aronson et al., 2016) as well as in ants 

(McGlynn, 1999; Heterick et al., 2013; Vonshak & Gordon, 2015). The landscape 

genetics analysis corroborates this hypothesis. Latitudinally distinct clusters and sub-

clusters, with well-defined hybridization zones between clusters (i.e., in Vienne between 

A and B) and sub-clusters (in Montélimar between B1 and B2) do not hint at gradual 

isolation by distance between clusters, but more likely at different colonization histories. 

Pairwise FST values calculated between sub-clusters confirmed this result as they 

do not follow a simple geographical pattern. In addition, reductions in population size 

suggested by low M-Ratios in all sub-clusters might indicated that more than one 

introduction occurred into the study area from one or more external sources. One likely 

hypothesis is that the observed pattern results from distinct introductory events followed 

by colonization favoured by human activities in the urban areas further north, and 

expansion in rural areas where climate matches preferences (Fig. 3). The opposite 

hypothesis of a gradual expansion northwards, e.g., resulting from a post-glacial 

recolonization event, would have generated a gradual signal leading to a linear 

differentiation pattern, unlike what is observed here. In addition, no latitudinal 

structuration of the M index was found, a pattern that does not fit gradual recolonization 

processes.  

Biological introductions concomitant with urbanization (Cristescu, 2015) could 

result in contact zones between species capable of genetic exchanges because of a lack of 

pre-zygotic, geographical or ecological reproductive barriers, as shown by Crispo, Moore, 

Lee‐Yaw, Gray and Haller (2011) in numerous taxa. Here, recent establisment of T. 

immigrans in the northernmost areas could have led to contact and hybridization with T. 

caespitum, as suggested by Wagner et al. (2017). In addition, the presence of T. 
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immigrans seems to lead to an exclusion of T. caespitum as  T. caespitum is present in 

cities in the absence of T. immigrans (e.g. in Dijon or Langres; Cordonnier et al., 2018). 
 

 The observed pattern is similar to 

the situation described in North America, 

where T. immigrans is known to be invasive 

since the early nineteenth century (King & 

Green, 1995) and where it has been 

described as an urban specialist (King & 

Green, 1995). In the north of its distribution 

studied here, this species seemed to be a 

good urban exploiter, which raises 

questions about its status as a native species 

in Europe. Considering habitat preferences 

and competitive exclusion, the situation 

observed in south-eastern France is strongly 

reminiscent of the situation described in its 

invasive range in North America (Steiner et 

al., 2008a). It appears therefore likely that 

T. immigrans might not be native to the 

present study area. Continent-wide 

investigations mobilizing genetic tools to 

find the probable source population should 

make it possible to test this hypothesis.  
 

The complexity of patterns highlighted by this study questions the consequences 

of the establishment of T. immigrans as well as the risk of the species colonizing cities 

further north (it is for example already present in Paris, 100km North of the study zone; 

Wagner et al., 2017). The hybridization of T. immigrans with T. caespitum should be 

researched thoroughly and the long-term impact of these interspecific genetic exchanges 

be evaluated. The present results should allow the construction of predictive models of 

the species’ range expansion in a warming and urbanizing world. Our study also tells of 

a world where global changes interact to create novel assemblages of genes and species 

with yet unforeseen consequences. 

Figure 3: Compilation of the main results 
of the study (pairwise FST values between 
sub-clusters defined by Bayesian 
clustering, M-ratio and rarefied number of 
alleles for each sub-cluster) and 
proposition of a colonization scenario 
fitting the observed patterns (full arrows 
indicating likely introduction event, and 
interrupted arrows indicating possible 
introduction events or gene flow).  
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Table S1. Statistics of microsatellite markers computed using GENALEX (Peakall and Smouse, 
2006) in 2 reconstructed populations defined by Bayesian clustering (Number of alleles and 
effective number of 3 alleles, expected and observed heterozygosity, F, Hardy-Weinberg 
Equilibrium HWE). 
 
Peakall, R. O. D. and Smouse, P. E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic 7 
software for teaching and research. - Molecular Ecology Resources 6: 288-295. 
 

 

 

 

Locus DF ChiSq Prob DF ChiSq Prob
Tspe52d 11 5.328 0.769 0.812 0.053 55 58.819 0.337 15 5.353 0.868 0.813 -0.068 105 75.851 0.986
Tspe52b 14 7.144 0.904 0.860 -0.051 91 82.470 0.727 27 7.244 0.886 0.862 -0.028 351 385.026 0.102
Tspe52k 12 7.988 0.865 0.875 0.011 66 61.726 0.626 13 3.986 0.781 0.749 -0.042 78 41.911 1.000
Ttsu56d 8 3.395 0.673 0.705 0.046 28 94.411 0.000 12 3.111 0.728 0.679 -0.073 66 36.030 0.999
Ttsu55a 15 6.318 0.788 0.842 0.063 105 161.701 0.000 19 6.820 0.868 0.853 -0.018 171 229.167 0.002
Ttsu59j 8 5.809 0.827 0.828 0.001 28 31.455 0.297 9 4.829 0.825 0.793 -0.040 36 30.253 0.738
Tspe51i 15 7.804 0.827 0.872 0.052 105 116.956 0.200 17 6.033 0.841 0.834 -0.008 136 82.562 1.000
Ttsu58i 14 6.712 0.824 0.851 0.032 91 69.419 0.955 18 7.985 0.877 0.875 -0.003 153 133.604 0.869
Tspe51a 10 6.399 0.961 0.844 -0.139 45 47.602 0.367 14 5.523 0.789 0.819 0.036 91 81.703 0.747
Tspe51o 13 7.051 0.885 0.858 -0.031 78 108.640 0.012 20 9.404 0.886 0.894 0.009 190 270.261 0.000
Tspe51d 7 2.456 0.673 0.593 -0.135 21 9.276 0.987 10 3.143 0.667 0.682 0.022 45 93.083 0.000
Tspe52a 10 5.376 0.827 0.814 -0.016 45 25.620 0.991 11 5.665 0.781 0.823 0.052 55 53.039 0.550
Tspe53b 9 3.855 0.731 0.741 0.013 36 123.321 0.000 11 4.121 0.779 0.757 -0.028 55 81.108 0.013
Ttsu57l 8 3.257 0.600 0.693 0.134 28 55.799 0.001 15 2.450 0.398 0.592 0.327 105 404.151 0.000

Ho He F
HWE

Cluster A1 Cluster A2

Na Ne Ho He F
HWE

Na Ne

Locus DF ChiSq Prob DF ChiSq Prob
Tspe52d 16 5.080 0.815 0.803 -0.015 120 77.577 0.999 14 4.340 0.771 0.770 -0.002 91 101.423 0.214
Tspe52b 21 10.398 0.914 0.904 -0.011 210 203.045 0.622 22 7.995 0.867 0.875 0.009 231 230.249 0.502
Tspe52k 11 5.723 0.802 0.825 0.028 55 71.329 0.068 14 4.501 0.790 0.778 -0.016 91 81.696 0.747
Ttsu56d 11 4.824 0.840 0.793 -0.059 55 131.370 0.000 15 3.637 0.710 0.725 0.021 105 221.119 0.000
Ttsu55a 19 8.248 0.901 0.879 -0.026 171 257.177 0.000 25 9.199 0.894 0.891 -0.003 300 235.925 0.997
Ttsu59j 15 5.586 0.790 0.821 0.038 105 124.418 0.095 18 5.508 0.837 0.818 -0.023 153 86.669 1.000
Tspe51i 19 8.599 0.864 0.884 0.022 171 174.104 0.420 28 11.006 0.900 0.909 0.010 378 285.500 1.000
Ttsu58i 15 6.309 0.827 0.841 0.017 105 76.474 0.984 19 7.058 0.848 0.858 0.012 171 184.209 0.232
Tspe51a 12 5.591 0.852 0.821 -0.037 66 75.149 0.206 14 3.965 0.714 0.748 0.045 91 218.866 0.000
Tspe51o 19 6.785 0.827 0.853 0.030 171 177.440 0.352 30 8.544 0.876 0.883 0.008 435 349.126 0.999
Tspe51d 12 7.705 0.840 0.870 0.035 66 50.344 0.924 14 6.858 0.843 0.854 0.013 91 71.999 0.929
Tspe52a 8 3.090 0.642 0.676 0.051 28 42.540 0.039 13 4.605 0.714 0.783 0.088 78 280.188 0.000
Tspe53b 9 4.931 0.825 0.797 -0.035 36 23.487 0.946 8 4.460 0.813 0.776 -0.049 28 31.987 0.275
Ttsu57l 15 5.913 0.642 0.831 0.227 105 142.949 0.008 18 4.647 0.589 0.785 0.249 153 360.896 0.000

Na Ne Ho He F
HWE

Na Ne Ho He F
HWE

Cluster B1 Cluster B2

Locus DF ChiSq Prob
Tspe52d 13 4.635 0.789 0.784 -0.007 78 45.233 0.999
Tspe52b 18 6.113 0.825 0.836 0.014 153 153.972 0.463
Tspe52k 9 3.280 0.737 0.695 -0.060 36 91.950 0.000
Ttsu56d 9 3.630 0.632 0.725 0.128 36 57.249 0.014
Ttsu55a 16 8.963 0.965 0.888 -0.086 120 116.361 0.577
Ttsu59j 9 5.194 0.825 0.807 -0.021 36 25.253 0.910
Tspe51i 17 8.746 0.877 0.886 0.010 136 124.802 0.745
Ttsu58i 13 7.503 0.912 0.867 -0.053 78 124.047 0.001
Tspe51a 9 3.742 0.625 0.733 0.147 36 25.823 0.895
Tspe51o 20 9.556 0.895 0.895 0.001 190 189.447 0.498
Tspe51d 10 4.592 0.807 0.782 -0.032 45 85.966 0.000
Tspe52a 11 5.223 0.825 0.809 -0.020 55 42.155 0.898
Tspe53b 7 4.764 0.754 0.790 0.045 21 28.682 0.122
Ttsu57l 10 2.935 0.474 0.659 0.282 45 114.963 0.000

Cluster B3

Na Ne Ho He F
HWE
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Abstract 

Interspecific hybridization is becoming more frequent worldwide due to 

increasing global changes and translocations of organisms. For individual organisms, the 

most significant negative consequences are sterility or inviability of hybrid offspring. 

However, hybridization sometimes lead to fertile offspring, promoting introgression from 

one species into another. In such situations, hybridization can play a key role in evolution 

and speciation. Combining hypervariable DNA (microsatellites) and mitochondrial DNA 

markers with the use of several modelling methods allows an efficient detection of 

hybridization processes. The present study therefore investigates hybridization between 

two ant species, Tetramorium immigrans and T. caespitum, using multiple methods, and 

systematically comparing results with simulated data to ensure accurate identification of 

hybrids. Introgression was revealed both by backcross detection based on 14 nuclear 

microsatellite loci and by mitochondrial-nuclear discordance based on comparison with 

mitochondrial DNA (Cytochrome Oxidase I). Results were spatially consistent, with 

hybrids located at latitudes where parental species are sympatric. The causes and 

consequences of hybridization and introgression between T. caespitum and T. immigrans 

remain to be further investigated, especially because T.immigrans could be an invasive 

species in France. 

 

Keywords: Bayesian clustering, Interspecific hybridization, Introgression, 

Mitochondrial DNA, Pavement ant, Tetramorium 

  



Chapter 4. INTERSPECIFIC HYBRIDIZATION AND INTROGRESSION 

 

 

 
124 

INTRODUCTION 

Hybridization, i.e., reproductive interactions between individuals whose lineages 

show some degree of evolutionary divergence (Harrison, 1990; Brennan et al., 2015), has 

been demonstrated to be relatively common (Arnold, 1992, 2006; Mallet, 2005). Such 

interspecific genetic exchanges are becoming even more frequent worldwide due to 

increasing global changes and translocations of organisms by Humans (Brennan et al., 

2015; Allendorf, Leary, Spruell, & Wenburg, 2001). Hybridization can have negative 

impacts on species or ecosystems, through loss of biodiversity and ecosystem degradation 

(Brennan et al., 2015) contributing directly and indirectly to the extinction of many species 

(Allendorf et al., 2001). For individuals, the most significant negative consequences of 

interspecific hybridization may be sterility or inviability of hybrid offspring, explaining 

that despite hybridization is a common phenomenon, hybrid individuals within a 

population should be relatively rare (Butler, Peters & Kronauer, 2018). In some particular 

cases however, hybrid offsprings are fertile, and hybridization can lead to the introgression 

of genes from one species into another (Anderson, 1953; Patten, Carioscia & Linnen, 2015), 

which could provide new adaptive variations (Brennan et al., 2015), and sometimes – 

although rarely – even lead to ‘hybrid speciation’ (Mallet, 2007; Schumer et al., 2014, 2018). 

Hybridization can therefore play a key role in the evolution of many plant and animal taxa 

(Allendorf et al., 2001; Arnold & Kunte, 2017), even if most authors agree on the negative 

effects of introgressions of non-indigenous into native gene pools (Mallet, 2005; Allendorf 

& Luikart, 2009).  

In view of these consequences of hybridization, its detection is of major 

importance in ecology and evolution. The accurate detection of putative first-generation 

(F1) hybrids and backcrosses resulting from hybridization is a critical task. The use of 

hypervariable DNA markers (microsatellites) and new Bayesian modelling methods have 

dramatically improved admixture analyses and individual assignment testing (Randi et 

al., 2008). Different approaches, implemented in software such as STRUCTURE (Pritchard, 

Stephens, Rosenberg & Donnelly, 2000; Falush, Stephens & Pritchard, 2003), BAPS 

(Corander & Marttinen, 2006) and NEWHYBRIDS (Anderson & Thompson, 2002), have 

been used in numerous studies to identify hybrid individuals based on simulated F1 

hybrids and backcrosses (Vähä & Primmer, 2006; Sanz, Araguas, Fernández, Vera & 

García-Marín, 2009; Cabria et al., 2011). These studies concluded that all these 
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approaches lead to consistent identification of admixed first-generation hybrids and 

backcrosses. However, STRUCTURE seemed more efficient than BAPS to detect an admixed 

genotype and to correctly estimate an individual’s ancestry composition (Bohling, 

Adams, & Waits, 2013). Burgarella et al. (2009) found that the use of STRUCTURE resulted 

in the highest power to detect hybrids, whereas NEWHYBRIDS provided the highest 

accuracy, and therefore suggested to combine these two complementary Bayesian 

approaches and to use simulation-based validation to gain resolution in the identification 

of admixed individuals. More recently, Beugin, Gayet, Pontier, Devillard, & Jombart 

(2018) compared the performance of the model underlying Snapclust with NEWHYBRIDS 

and suggested that although NEWHYBRIDS recovered more efficiently parental 

populations, Snapclust was not only faster but exhibited improved performances for the 

identification of hybrids at deeper levels of hybridization. 

Because mitochondria are usually inherited from the mother, recurrent 

backcrossing of hybrid females with males from other lineage will ultimately lead to 

offspring with introgressed mitochondria, i.e., mtDNA from the maternal lineage and 

nuclear DNA from the paternal lineage (Darras & Aron, 2015). The sharing of 

mitochondrial haplotypes between sympatric, but genetically divergent lineages is 

therefore the signature of mitochondrial introgression. According to the review of Toews 

& Brelsford (2012), when foreign mtDNA haplotypes are found deep within the 

distribution range of a second taxon, those mtDNA haplotypes are more likely to be at a 

high frequency and are commonly driven by sex-biased asymmetries or adaptive 

introgression. Combining microsatellite markers and mtDNA should help improve 

discrimination between situations with only F1 hybrids and situations with introgression. 

Such mtDNA and nuclear DNA marker combinations have promoted the detection 

of hybridization and introgression processes in various organisms. In many ant taxa, 

hybridization is common and sometimes leads to the evolution of reproductively isolated 

new lineages (Feldhaar, Foitzik & Heinze, 2008). The consequences of hybridization in 

social Hymenoptera differ from other species as most of the potential deleterious effects 

are mitigated by haplodiploidy and eusociality (Butler et al., 2018). Haplodiploid sex 

determination appears to decrease the costs of mating with an allospecific male because 

viable hybrid workers help cross-mated queens to produce conspecific males from 

unfertilized eggs; when conspecific mates are not available, queens therefore could have 
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a fitness interest to mate with an allospecific partner (Feldhaar et al., 2008). Most often, 

hybridization in ants appears as an evolutionary dead-end given that fertile hybrids are 

rarely found (Feldhaar et al., 2008; Purcell et al., 2016). In such situations, hybrid zones 

reflect a balance between migration and selection against hybrids (Barton & Hewitt, 

1989). Nevertheless, these hybrid zones can also be maintained without selection against 

hybrids, e.g., thanks to increased fitness of hybrids along narrow ecotones or to an 

equilibrium between migration and selection acting along an environmental gradient 

(Endler 1977; Moore, 1977). The consequences for gene exchange between species 

therefore make hybrid zones privileged places for studying the processes of divergence 

between lineages, as well as the mechanisms limiting genetic exchanges that can lead to 

speciation or, conversely, the meeting of differentiated entities (Harrison 1990). The few 

situations providing evidence of introgression, including the case studied here, may 

therefore provide a powerful way to investigate speciation in social insects (Purcell et al., 

2016).  

The present study focuses on two ant species of the Tetramorium caespitum 

complex: T. immigrans Santschi, 1927 and T. caespitum (Linnaeus, 1758) (Wagner et al., 

2017). Wagner et al. (2017) suggested recent hybridization as source for mitochondrial-

nuclear discordance found in two individuals with a Tetramorium immigrans mtDNA and 

which clustered with T. caespitum for Amplified Fragment-Length Polymorphism. 

Cordonnier et al. (2018) identified 285 individuals simultaneously associated to several 

species based on their genotypes, most of whom had an intermediate genotype between 

T. immigrans  and T. caespitum. All these individuals with an intermediate genotype 

could not be assigned to a species in Cordonnier et al. (2018) and were therefore excluded 

from the analyses. In view of the results of Wagner et al. (2017), these individuals might 

be hybrids between T. caespitum and T. immigrans, which would suggest a relatively 

frequent hybridization between these two species. So far, hybridization between T. 

caespitum and T. immigrans has never been studied; it is currently suspected only through 

the three mitochondrial-nuclear discordances found by Wagner et al. (2017). We 

investigate here hybridization patterns between T. immigrans and T. caespitum. To detect 

potential introgression, we used both backcrosses detection based on nuclear DNA (14 

microsatellites loci) and mitochondrial-nuclear discordance based on comparison with 

mtDNA (Cytochrome Oxidase I). To ensure the most accurate possible identification of 
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hybrids, we combined methods implemented in STRUCTURE, NEWHYBRIDS and Snapclust 

and compared putative hybrids with simulated F1 hybrids and backcrosses. We 

subsequently compared the range limits of the detected hybrids to the ranges of parental 

species in order to validate the spatial consistency of our results. 

 

METHODS 

The present study focused on Tetramorium immigrans Santschi, 1927 and T. 

caespitum (Linnaeus, 1758), two cryptic species of the Tetramorium caespitum complex 

distinguishable using genetic (Cytochrome Oxidase I analysis) and morphometric 

characters on workers (Wagner et al., 2017). Tetramorium immigrans is an invasive 

species in North America, where it was introduced in cities in the 19th century or earlier 

(Steiner et al. 2008) and is considered native in Europe where its status has never been 

investigated. However, a previous study in the Lyon urban area showed that T. immigrans 

occurred in fragmented and warm areas and questioned its status in Europe (Gippet et al. 

2017). Ongoing works by our team reveal cues of colonization histories and founder 

effects, making it likely that it may not be native to Southeastern France. 

 

Microsatellite data 

Cordonnier et al. (2018) collected one ant worker per colony in 1690 colonies of 

Tetramorium belonging to five species (Tetramorium semilaeve André, 1883, T. forte 

Forel, 1904, T. moravicum Kratochvíl, 1941, T. immigrans, and T. caespitum). Sampling 

was carried out along a 460 km climatic gradient located in France, east of the Saône and 

Rhône Rivers, extending from the city of Langres in the North (47° 51′ 12″ N, 5° 20′ 02″ E) 

to the city of Tarascon in the South (43° 48′ 21″ N, 4° 39′ 37″ E). Samples were collected 

along a predefined path in diverse environments including urban pavements, roadsides, 

public parks, orchards, farmlands, fields, vineyards, meadows, riverbanks and forest, in 2015 

and 2016 from April to September on non-rainy days with temperatures ranging from 16 to 

28°C, with a minimum distance of 200 m between two colonies. Collected ants were stored 

in 96% ethanol. Samples were deposited as voucher material in the collection UCBLZ, 

CERESE, Université de Lyon, Université Claude Bernard Lyon1.  

Cordonnier et al. (2018) successfully identified 544 workers of T. immigrans and 

698 workers of T. caespitum using a two-step approach combining nuclear DNA 



Chapter 4. INTERSPECIFIC HYBRIDIZATION AND INTROGRESSION 

 

 

 
128 

clustering (14 microsatellite markers) and species identification by mtDNA cytochrome 

oxidase I sequencing. However, this sample also included 285 individuals that could not 

be identified because they were simultaneously associated to several species based on their 

genotypes, 240 of them having an intermediate genotype between T. immigrans and T. 

caespitum (i.e., their sum of membership coefficients for these two species was higher than 

0.95). All these individuals were removed from the study by Cordonnier et al. (2018) and 

have therefore never been analyzed. In the present study, we randomly subsampled 150 of 

the 240 individuals with intermediate genotypes between T. immigrans and T. caespitum. We 

also randomly subsampled 150 individuals from pure parental species (membership > 0.95 

in a single species) for both two species, to make sure that these individuals were 

representative of the entire area sampled in Cordonnier et al. (2018). Our final dataset 

included genotypes for 14 microsatellite markers (described in Cordonnier et al., 2018) for 

this set of 150 T. immigrans, 150 T. caespitum and 150 putative hybrids. Following 

recommendations provided in Burgarella et al. (2009) and Vähä & Primmer (2006), we used 

simulated data to assess which method would provide the most reliable results in our 

experimental system. We used the computer program HYBRIDLAB 1.0 (Nielsen, Bach & 

Kotlicki, 2006) to simulate 150 multilocus F1 hybrid genotypes between T. caespitum 

and T. immigrans, and 150 multilocus first generation backcrosses (75 with each of the 

parental species) based on the 150 genotypes of each pure species described above. We 

then computed two comparative datasets combining (i) the 300 parental genotypes and 

the 150 simulated F1 hybrids, and (ii) the 300 parental genotypes and the 150 simulated 

backcrosses, respectively.  

 

Mitochondrial DNA data 

To improve discrimination between situations with only first generation hybrids 

and situations with backcrosses, 95 individuals (11 T. caespitum, 45 T. immigrans, and 

39 hybrids) were Sanger-sequenced for a stretch of mitochondrial gene cytochrome 

oxidase I (COI). COI was amplified by PCR using specific primers developed from longer 

stretches of COI from the literature (Schlick-Steiner et al., 2006) in a 30 μL total volume 

of 170 μM dNTPs, 0.1 μg.μL-1 BSA (Biolabs, B9001S), 0.16 μM of primers, 1.5 mM 

MgCl2, 2 μL DNA, 1.2 U Taq Polymerase (Eurobio, GAETAQ00), and 1X PCR Buffer 

(Eurobio, GAETAQ00). Amplifications consisted in 5 min at 94°C, then 40 cycles 
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(30 sec at 94°C, 30 sec at 48°C, and 30 sec at 72°C), and 5 min at 72°C. After purification, 

products were sequenced (service provided by BIOFIDAL on a ABI 3730xl sequencer) and 

compared to known sequences from Genbank using Blast-n to identify the sequenced 

species.  

 

Analyses 

Putative hybrid assignment based on genotypes 

To determine the status of the 150 putative hybrids, we used assignment methods 

implemented in STRUCTURE v. 2.3.1 (Pritchard et al., 2000), NEWHYBRIDS (Anderson & 

Thompson, 2002) and Snapclust (Beugin et al., 2018) on genotypes of putative hybrids, 

simulated F1 and backcrosses. STRUCTURE was used to identify the ancestry composition 

of individuals, based on the admixture model with correlated allele frequencies, K = 2 

clusters with ten iterations. Each run consisted in 500,000 replicates of the MCMC after 

a burn-in of 500,000 replicates. Clustering results were analyzed using CLUMPP v. 1.2.2 

(Jakobsson & Rosenberg, 2007) to determine the proportion of individual genomes 

originating from each cluster (Q-values). As STRUCTURE does not allow labelling hybrids 

with an associated probability, we used two alternative methods to measure hybrid status. 

Snapclust relies on the combination of a geometric approach (i.e., it clusters individuals 

based on their distances in the genetic space spanned by the allelic data, without assuming 

a specific population genetics model; Jombart, Devillard & Balloux, 2010) and fast 

likelihood optimization to more explicitly identify the hybrids between the two parental 

populations (Beugin et al., 2018). The results of Beugin et al. (2018) on simulated 

backcrossed individuals showed that the use of membership assignment probabilities 

corresponding to backcrosses were not accurate enough to categorize individuals 

unambiguously. We therefore looked for group membership probabilities for both 

parental species and potential hybrids using hybridization coefficients corresponding to 

F1 (0.5) (see supporting information Fig. S1 for results based on backcrosses coefficients 

0.25 and 0.75). As Snapclust does not discriminate backcrosses unambiguously, we 

specifically addressed the question of current introgression using NEWHYBRIDS to 

estimate the posterior probabilities (q) that an individual fall into five different genotype 

frequency classes: two parental classes (T. caespitum and T. immigrans) and three hybrid 

categories (F1, backcross with T. caespitum, and backcross with T. immigrans). The 
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analysis was performed based on ten iterations carried out using Jeffreys's prior and 

setting the burn-in period to 20,000, with a MCMC length of 500,000 replicates.  

We used several approaches to assign the analyzed individuals to a single genetic 

class. First, case-specific evaluations based on comparison with simulated genotypes of 

known ancestry were needed, because the reliability of outputs from assignment methods 

depends on the type and number of markers, hybridization rate, and sampling quality. We 

therefore compared results obtained in the four pools of individuals (pure parental 

individuals, simulated backcrosses, simulated F1 hybrids, and real putative hybrids) for 

each three assignment methods both graphically and numerically. We used a Q-value 

threshold Tq = 0.95, above which individuals were assigned to one genetic class, i.e., pure 

parental, F1 hybrid or backcross (NEWHYBRIDS, Snapclust), allowing comparison of these 

assignments with the Q-values obtained in STRUCTURE. Finally, we explored the 

distribution of individuals of each pool (pure parental individuals, simulated backcrosses, 

simulated F1 hybrids, and real putative hybrids) in six ranges of Q-value (0.5-0.6, 0.6-

0.7, 0.7-0.8, 0.8-0.9, 0.9-0.95, >0.95) for the three assignment methods used here. For 

parental individuals, these distributions were systematically calculated based on analyses 

of the putative parent and hybrid data set. 

 

Spatially explicit validation of the results 

Previous studies revealed that latitudinal distributions of T. caespitum and T. immigrans 

are partially overlapping in the sampling area, T. immigrans being found more to the south 

than T. caespitum, with a sympatric zone between approximately 44.8°N and 47°N 

(Cordonnier et al., 2018). We checked the consistency of our results in terms of spatial 

distribution of hybrids compared to parental species to confirm that the presence of 

hybrids was restricted to areas where both parental species are sympatric. For this 

purpose, we used latitudinal locations of hybrid individuals (including F1 and 

backcrosses) with congruent genotypic identification for all three methods, or with at least 

two congruent methods and not contradictory third (i.e., where an individual was assigned 

to no other class). We also used latitudinal locations of all 544 workers of T. immigrans 

and 698 workers of T. caespitum identified in Cordonnier et al. (2018). We then tested 

differences in terms of latitudinal location between T. immigrans, T. caespitum and 

interspecific hybrids to confirm that hybrids are located in intermediate latitudes 



Chapter 4. INTERSPECIFIC HYBRIDIZATION AND INTROGRESSION 

 

 

 
131 

compared to parental species. As latitudes are not normally distributed, we used a 

nonparametric Kruskal-Wallis test coupled with Mann-Whitney-Wilcoxon tests for 

contrasts (including a simple Bonferroni correction). 

 

RESULTS 

All three assignment methods lead to very similar results whatever the pool of 

individuals (pure parental individuals, simulated backcrosses, simulated F1 hybrids, and 

real putative hybrids; Fig. 1). Graphical patterns clearly show that the set of putative 

hybrids neither corresponded to situations with only parental species (pure individuals, 

supporting information Fig. S2) nor with only F1 hybrids, and therefore necessarily 

included backcrosses (Fig. 1).  

 

 

Figure 1. Barplots obtained for the three groups of hybrids (simulated F1, simulated 
backcrosses, and putative hybrids) and the three clustering methods (STRUCTURE, 
Snapclust, NEWHYBRIDS). Each vertical line corresponds to an individual. Colors indicate 
membership to each category (T. caespitum in red; T. immigrans in blue; F1 hybrids in 
yellow, and backcrosses in grey).  
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Distributions of individual Q-values of each pool (pure parental individuals, 

simulated backcrosses, simulated F1 hybrids, and real putative hybrids) confirm that 

putative hybrids were the product of F1 crosses but also backcrosses with parental species 

(Table 1-3).  

 

Table 1: Distribution of individuals of each pool (pure parental individuals, simulated 
backcrosses, simulated F1 hybrids, and real putative hybrids) in six ranges of Q-value 
(0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-0.95, >0.95) resulting from STRUCTURE 
assignment. 
 

Q-values 
pure 
parents 

simulated 
backcrosses 

simulated 
F1 

putative 
hybrids 

 

>0.95 99.0% 10.0% 0.0% 7.3% 
0.9-0.95 1.0% 8.0% 0.0% 12.0% 
0.8-0.9 0.0% 19.3% 0.0% 24.0% 
0.7-0.8 0.0% 33.3% 1.3% 12.0% 
0.6-0.7 0.0% 22.7% 16.7% 16.0% 
0.5-0.6 0.0% 6.7% 81.3% 28.7% 

  
 
Table 2: Distribution of individuals of each pool (pure parental individuals, simulated 
backcrosses, simulated F1 hybrids, and real putative hybrids) in six ranges of membership 
probabilities (0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-0.95, >0.95) resulting from Snapclust 
assignment. 

 
pure 
parents 

simulated 
backcrosses 

simulated 
F1 

putative 
hybrids 

Parental 
species 
membership 
probabilities  

>0.95 100.0% 36.7% 0.0% 38.7% 
0.9-0.95 0.0% 6.7% 1.3% 4.7% 
0.8-0.9 0.0% 7.3% 0.0% 7.3% 
0.7-0.8 0.0% 7.3% 0.7% 2.0% 
0.6-0.7 0.0% 4.7% 0.7% 4.0% 
0.5-0.6 0.0% 1.3% 0.7% 3.3% 

F1 hybrids 
membership 
probabilities  

>0.95 0.0% 19.3% 94.7% 32.7% 
0.9-0.95 0.0% 6.0% 2.0% 3.3% 
0.8-0.9 0.0% 6.7% 0.0% 0.7% 
0.7-0.8 0.0% 3.3% 0.0% 3.3% 
0.6-0.7 0.0% 0.0% 0.0% 0.0% 
0.5-0.6 0.0% 0.7% 0.0% 0.0% 
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Table 3: Distribution of individuals of each pool (pure parental individuals, simulated 
backcrosses, simulated F1 hybrids, and real putative hybrids) in six ranges of membership 
probabilities (0.5-0.6, 0.6-0.7, 0.7-0.8, 0.8-0.9, 0.9-0.95, >0.95) resulting from 
NEWHYBRIDS assignment. 

 

pure 
parents 

simulated 
backcrosses 

 
simulated 
F1 

putative 
hybrids 

Parental 
species 
membership 
probabilities 

>0.95 95.7% 0.3% 0.0% 0.0% 
0.9-0.95 3.7% 1.0% 0.0% 0.7% 
0.8-0.9 0.3% 0.3% 0.0% 0.7% 
0.7-0.8 0.0% 0.0% 0.0% 1.3% 
0.6-0.7 0.3% 0.0% 0.0% 0.7% 
0.5-0.6 0.0% 0.3% 0.0% 0.7% 

Backcrosses 
membership 
probabilities 

>0.95 0.0% 83.3% 0.0% 40.7% 
0.9-0.95 0.0% 2.0% 0.0% 4.7% 
0.8-0.9 0.0% 3.3% 0.0% 4.7% 
0.7-0.8 0.0% 4.7% 0.0% 5.3% 
0.6-0.7 0.0% 2.0% 0.0% 5.3% 
0.5-0.6 0.0% 0.7% 0.0% 5.3% 

F1 hybrids 
membership 
probabilities 

>0.95 0.0% 0.0% 98.7% 5.3% 
0.9-0.95 0.0% 0.0% 0.7% 3.3% 
0.8-0.9 0.0% 0.0% 0.7% 6.7% 
0.7-0.8 0.0% 0.0% 0.0% 4.0% 
0.6-0.7 0.0% 0.0% 0.0% 2.7% 
0.5-0.6 0.0% 0.0% 0.0% 4.0% 

 

Among the 150 potential hybrids tested, STRUCTURE identified 139 individuals as 

hybrids based on Q-value between 0.05 and 0.95. Three individuals were classified as T. 

caespitum and eight as T. immigrans. NEWHYBRIDS identified 61 backcross individuals, 8 

F1 hybrids and 81 unclassifiable individuals based on 0.95 threshold value. Finally, using 

Snapclust, 58 individuals were considered pure parents (49 T. immigrans and 9 T. 

caespitum), 49 F1 hybrids, and 43 were unclassifiable, corresponding to putative 

backcrosses. Assignment of analyzed individuals to a single genetic class by NEWHYBRIDS 

and Snapclust based on threshold Tq = 0.95 corresponded to distinct ranges of Q-values 

obtained in STRUCTURE (Table 4). 
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Table 4: Range of Q-values obtained for the empirical (not simulated) data as a result of 
Bayesian clustering computed in STRUCTURE for each category of individuals defined by 
NEWHYBRIDS and Snapclust analyses (threshold value Tq > 0.95).  
 

 

Snapclust favored parental species detection compared to other assignment 

methods (Table 2 & 4.), whereas NEWHYBRIDS detected no parental species in the putative 

hybrid pool (Table 3). Threshold Q-value of 0.95 in STRUCTURE appeared accurate to 

categorize an individual as pure species and strictly avoided inclusion of F1 hybrid 

individuals leading to misidentification of parental species (Table 4). Considering that an 

individual belongs to a pure species when Q-value is above 0.95 also limits the risks of 

assigning a potential backcrossed individual to parental species with a 10% error 

threshold (Table 1). Latitudinal locations of individuals assigned to hybrids categories 

were intermediate between T. immigrans and T. caespitum (Fig. 2).  
 

 
Figure 2. Latitudinal distributions of the individuals confirmed as hybrids and as pure 
parental species (Kruskal-Wallis chi-squared = 479.74, df = 2, p-value < 2.2 10-16). Thick 
black horizontal line: median value; box ends: first and third quartiles; whiskers: min and 
max values. Letters a, b, c indicate the results of the nonparametric Mann-Whitney-
Wilcoxon tests (a-b: W = 41030, p-value = 3.2 10-15; a-c: W = 55640, p-value < 2.2 10-

16; b-c: W = 20032, p-value = 2.2 10-12). 

 min STRUCTURE Q-value max STRUCTURE Q-value 
Backcross [NEWHYBRIDS] 0.057 0.943 

F1 Hybrids [NEWHYBRIDS] 0.393 0.607 
Parental species [NEWHYBRIDS] 0.935 0.994 

F1 Hybrids [Snapclust] 0.282 0.718 
Parental species [Snapclust] 0.721 0.994 
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Finally, 11 out of the 15 F1 hybrids had haplotypes associated with T. immigrans, 

12 of the 15 T. immigrans backcrosses had a T. immigrans haplotype and 8 of the 9 T. 

caespitum backcrosses had a T. caespitum haplotype (supporting information Fig. S3). 

Discordance frequency between nuclear assignment and mitochondrial haplotypes was 

similar in each parental species (respectively 3 out of 45 genotyped T. immigrans and 1 

out of 11 genotyped T. caespitum), which suggests a bidirectional (in both parental 

species) and symmetric (with the same prevalence) mitochondrial introgression.  

 

DISCUSSION 

The present study proves the existence of hybridization processes between 

Tetramorium immigrans and T. caespitum and clearly evidences backcrosses of hybrids 

with parental species based on three methods and comparisons with simulated data. 

Results are spatially consistent, with hybrids located at latitudes where parental species 

are sympatric. In addition, mitochondrial-nuclear discordances suggest bidirectional and 

symmetric introgression between these species.  

 

The 150 sampled individuals not fully assigned to T. immigrans or T. caespitum 

in Cordonnier et al. (2018) (Q-values < 0.95) thus appear to result from hybridization 

between these two species. The same detection methods based on a Q-value threshold 

have been already described for other taxa, e.g., between populations of wild and 

domestic cats in Italy (Randi et al., 2001), between two oak species (Quercus suber and 

Q. ilex; Burgarella et al., 2009), or between invasive sika and native red deer (Cervus 

Nippon and C. elaphus; Senn & Pemberton, 2009), as well as in ants, e.g., between 

Formica selysi and F. cinerea (Purcell et al., 2016). Ito, Langenhorst & Inoue-Murayama 

(2015) considered that a high qi threshold value (> 0.95) confidently identifies pure 

individuals and allows the exclusion of potential hybrids. However, the reliability of 

assignment methods depends on the type and number of markers, the hybridization rate, 

and the quality of the sampling (e.g., Vähä & Primmer, 2006). Therefore, the use of a 

threshold of 0.95 to differentiate hybrids from parental species should be verified in each 

studied system, through a robust approach based on the multiplicity of methods and 

confirmation through simulations. Here, we confirm that the qi threshold value of 0.95 
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proposed in Cordonnier et al. (2018) to consider an individual as belonging to a pure 

species ensures that no F1 hybrid individuals are erroneously assigned to parental species. 

All three methods were congruent in recovering parental populations and discriminating 

individuals from both F1 hybrid and backcross classes. However, Snapclust tended to 

over-detect parental species compared to other assignment methods, whereas 

NEWHYBRIDS detected no parental species in the putative hybrid pool and was the most 

accurate at properly assigning the F1 hybrids and backcrossed individuals. Together, 

these findings clearly support the use of hyper variable microsatellite markers to identify 

F1 and backcrossed hybrids, and the use of mitochondrial markers to confirm the 

existence of mitochondrial introgression. The proposed marker (COI) is currently used in 

T. immigrans and T. caespitum for barcode identification of species (Schlick-Steiner et 

al., 2006; Wagner et al., 2017). Hybridization is sometimes incompatible with the use of 

DNA barcodes for species delimitation (e.g., Dupont, Porco, Symondson & Roy, 2016), 

more especially in haplodiploid systems (Patten et al., 2015). The mito-nuclear 

discordances found in our study make barcode species identification within the 

Tetramorium caespitum complex questionable. 

 

The large set of putative hybrids tested here included numerous backcrosses (more 

than 40% according to NEWHYBRIDS), revealing the first clues of interspecific 

reproductive events leading to fertile offspring. The occurrence of backcrossed 

individuals indicates that hybrid queens or males are fertile, which is confirmed by the 

presence of mitochondrial haplotypes of one species within another. The discovery of 

fertile hybrids is unusual in ants (Purcell et al., 2016; Feldhaar et al., 2008), and is 

particularly interesting as the numerous backcrosses compared to F1 hybrids may reveal 

a high fitness of hybrids, or at least a weak selection against hybrids. In such situations, 

hybridization sometimes results in the extirpation of one of the parental species or in the 

replacement of species pairs by hybrid swarms (Gilman & Behm, 2011). Interspecific 

hybridization may allow adaptive combinations to evolve at a higher rate (Mallet, 2005), 

therefore increasing the fitness of hybrids (Twyford & Ennos, 2012). Moreover, 

hybridization is a powerful engine for speciation, especially when hybrid lineages are 

ecologically or spatially divergent from the parent species (Twyford & Ennos, 2012). 

Previous studies about hybrid zones in ants have already provided insights into speciation. 
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For example, Cahan & Vinson (2003) showed that Solenopsis xyloni evolved a social 

hybridogenesis in the hybrid zone with S. geminata, leading to obligate hybridization for 

worker production, but preventing hybrids from being represented in the reproductive 

caste. Purcell et al. (2016) worked on the hybrid zone between Formica selysi and F. 

cinerea and showed an asymmetric distribution of hybrids skewed towards F. cinerea, 

suggesting a pattern of unidirectional nuclear gene flow from F. selysi into F. cinerea. 

The hybrid zone detected in the present study should therefore be studied much deeper in 

the future as it could provide a suitable system to investigate speciation in social insects. 

 

Hybridization must be considered not only in its genetic but also in its ecological 

context. Studying the biological mechanisms facilitating interspecific mating between T. 

immigrans and T. caespitum should improve our understanding of hybridization 

processes between them. Wagner et al. (2017) already suggested that hybridization 

between these species might be facilitated by similar male genital morphology, 

overlapping phenology, and frequent sympatric occurrence. Since there are no anatomical 

barriers to mating between these species, the production of hybrid offspring may result 

from an absence of discrimination of the heterospecific partners. Weakly differentiated 

cuticular hydrocarbon profiles and diminished levels of interspecific aggression could 

further reveal a lack of species recognition cues (Purcell et al., 2016). Studying whether 

hybridization is favored preferentially in males or females is also necessary, as Kulmuni 

& Pamilo (2014) showed that in two hybridized Formica species introgression is favored 

in diploid females but selected against in haploid males. It will be therefore necessary to 

measure whether hybrid queens or hybrid males are equally produced in the T. 

caespitum/T. immigrans hybrid system and to investigate if both sexes can produce viable 

offspring. 

 

Finally, large-scale processes involved in the setting up of the hybrid zone 

described here should be explored. The literature associates hybridization with three main 

processes. (i) Increases in rates of hybridization and introgression are often attributed to 

translocations of organisms by humans (Allendorf et al., 2001). When species colonize 

new environments, colonizing populations are often small, and opportunities for sexual 

reproduction may be limited by availability of mates, leading colonizing species to exploit 
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the presence of heterospecific congeners (Hall, 2016). In addition, in contact zones, 

distinct lineages may hybridize, increasing genetic variation and reducing genetic 

constraints in newly formed hybrid populations, thereby increasing their genetic potential 

or adaptability (Roy, Lucek, Walter & Seehausen, 2015). Across ant taxa, Feldhaar et al. 

(2008) predicted that detailed research should reveal numerous additional cases of 

hybridization, in particular in those ant faunas that are characterized by the recent 

introduction of multiple invasive species. In addition, hybridization may play a significant 

role for introduced species to become invasive (Ellstrand & Schierenbeck, 2000; 

Allendorf & Luikart, 2007; Hall, 2016), e.g., allowing genetically admixed individuals to 

invade novel niches unoccupied by any of their parent species (Roy et al., 2015). 

Mesgaran et al. (2016) showed for example that transient hybridization with the colonizer 

has probably driven the rapid replacement of the plant Cakile edentula by C. maritima 

over a large part of its invasive range in Northwestern America, New Zealand, and 

Australia. (ii) Habitat disturbance is also considered responsible for the increase in 

hybridization between species in recent years. Indeed, hybridization between naturally 

co-occurring species that normally do not interbreed is being documented following 

anthropogenic habitat modifications for an increasing number of taxa (Allendorf et al., 

2001; Grabenstein & Taylor, 2018). Identifying the conditions promoting hybridization 

in disturbed habitats, the generality of these conditions across taxa, and the taxa most 

affected by human-mediated changes is therefore critical for furthering our understanding 

of human impacts on hybridization (Grabenstein & Taylor, 2018). (iii) Finally, climate 

changes also promote hybridization or introgression. In response to climate changes, 

species change their distributions, leading to new contact zones between previously 

isolated taxa (Brennan et al., 2015). For example, several studies shown that when 

hybridization occurs within a contact zone between two closely related bird species, 

interspecific interactions and climate interact in determining hybrid zone location and 

dynamics (Reudink, Mech, Mullen, Curry & Klicka, 2007; Taylor et al., 2014; McQuillan 

& Rice, 2015). Garroway et al. (2010) recorded the first report of hybrid zone formation 

following a range expansion induced by contemporary climate change between two 

species of North American flying squirrel. In plants, the impact of climate changes has 

also been reported to increase opportunities for hybridization among previously isolated 
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lineages, facilitating the breakdown of reproductive barriers and the formation of hybrids 

(Vallejo-Marin & Hiscock, 2016).  

 

Given latitude overlap between the distribution of T. caespitum and T. immigrans 

(Cordonnier et al., 2018), the potential role of urbanization-induced disturbance in 

habitats on the presence of T. immigrans (Wagner et al., 2017; Gippet et al., 2017; 

Cordonnier et al., ongoing work), the fact that T. immigrans is invasive in North America 

(Steiner et al., 2006, 2008) and has a questioned status in France (Gippet et al., 2017) 

where it also could have been introduced (Cordonnier et al., ongoing work), the causes 

and consequences of hybridization will deserve further investigation focused on the 

hybridization zone delineated in the present study.  
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SUPPORTING INFORMATION 

 
Figure S1. Barplots obtained from Snapclust with hybrid coefficients 0.25 and 0.5 (A: 
Parental species + simulated F1; B: Parental species + simulated backcrosses; C: parental 
species + putative hybrids). Each vertical line corresponds to an individual. Colors 
indicate membership to each category (T. caespitum in red, T. immigrans in blue, F1 
hybrids in yellow, and backcrosses in grey). 
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Figure S2. Barplots obtained from the three clustering methods (a: STRUCTURE; b: 
Snapclust; c: NEWHYBRIDS). Each vertical line corresponds to an individual. Colors 
indicate membership to each category (T. caespitum in red; T. immigrans in blue; F1 
hybrids in yellow, and backcrosses in grey).  
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Figure S3. Global relationships of haplotypes based on COI sequences generated in this 
study and compared to reference sequences obtained from GenBank for Tetramorium 
immigrans (in red) and T. caespitum (in blue) (sequence names include species names 
and GenBank accession number). “T.immigrans” indicates a genotype from Tetramorium 
immigrans, “T.caespitum” indicates a genotype from T. caespitum, “BC” indicates a 
backcross and “hybrid-F1” indicates a genotype of first-generation hybrid. All sequences 
were aligned using the default options in MUSCLE v3.8.31 as implemented in SeaView 
v4.2.9. Based on these aligned sequences, the tree has been calculated using the PhyML 
algorithm with the GTR distance without invariable sites, optimized nucleotide 
equilibrium frequencies, and tree-searching operations involving best of NNI & SPR. The 
branch lengths are proportional to estimated divergence along each branch. 
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Abstract 

Species and nestmate recognition in social insects occurs mostly through cuticular 
hydrocarbons acting as chemical cues. These compounds generate a colony-specific odor 
template depending on genetic and environmental factors. Interindividual recognition 
results in specific behavioral responses, regulating the level of aggressiveness towards 
other individuals during an interaction. Although species discrimination and recognition 
cues have been poorly studied in the context of interspecific hybridization, such systems 
offer an opportunity to further investigate the influence of heritable and environmental 
factors on recognition. We explore the strength of discrimination in a hybrid zone 
between two ant species – Tetramorium immigrans and T. caespitum – by comparing 
cuticular hydrocarbon profiles and measuring intra- and interspecific worker aggression 
in both areas of sympatry and areas of allopatry among species. Species cuticular 
hydrocarbon profiles is well-differentiated and interspecific aggression is high, revealing 
highly discriminating species recognition cues. Hybrids’ cuticular hydrocarbon profiles 
consist in a mixture of the parental bouquets, but also exhibit hybrid-specific patterns. 
Behavioral assays show that T. immigrans is as aggressive towards hybrids as towards 
heterospecifics. Finally, aggression between heterospecific workers is lower when 
protagonists came from areas of sympatry among species than from areas of allopatry, in 
accordance with the “dear enemy” phenomenon. Taken as a whole, these findings paint 
a particularly complex picture of the recognition cues system in T. immigrans, T. 
caespitum and their hybrids, and highlights that hybrid zones afford a still under-explored 
opportunity for investigating recognition mechanisms and discrimination between 
species. 
 

Keywords: Aggressive behavior, Cuticular hydrocarbons, Hybrid zone, Recognition cues, 
Tetramorium 
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INTRODUCTION 

Species, nestmate and caste recognition in social insects occurs mostly through 

chemical cues, especially by means of cuticular hydrocarbons (CHC) (Hölldobler and 

Willson 1990). Primarily acting as a barrier against desiccation and pathogens, CHCs 

have been co-opted to serve as a multicomponent cue in solitary species for reproductive 

behavior, as well as in social species where they serve at least as signature mixtures and 

pheromones at various levels (individual, within colony, and between colonies) 

(D’Ettorre et al. 2017). CHCs are stored in the post-pharyngeal gland and exchanged 

between members of the colony by trophallaxis, allogrooming, and physical contact 

(Lenoir et al. 2001; Chapuisat et al. 2005). The resulting chemical mix contributes to the 

creation of a colony-specific odor template (Frizzi et al. 2015). This odor depends on (i) 

the environment, including chemical compounds coming from sources such as food, 

construction materials of the nest, and microorganisms associated with the colonies, (ii) 

physical contacts among nestmates, and (iii) genetically heritable odors resulting from 

metabolites produced by the ants themselves, such as hydrocarbons (reviewed in Dimarco 

et al. 2010). As a consequence, both genetic (Dronnet et al. 2006) and environmental 

factors (e.g., heavy metal pollution, Sorvari and Eeva 2010; food, Chen and Nonacs 2000; 

Liang and Silverman 2000) can induce changes in CHCs profiles. These factors therefore 

play a major role in interindividual recognition and can alter behavior, specifically 

generating increase or decrease in aggression towards the partner during an interaction 

(Frizzi et al. 2015). Such mechanisms thus allow the recognition of nestmate and limit 

aggressiveness between nestmates, which is crucial to regulating colony cohesion and 

interactions with other colonies. The “dear enemy” phenomenon (Wilson 1975) leads 

residents to be less aggressive towards owners of neighboring territories than towards 

foreigners, making ants less aggressive towards neighboring relatives, and could therefore 

play a significant role in interindividual recognition (Heinze et al. 1996; Thomas et al. 

1999). This less aggressive behavior between neighbors could be due to the fact that 

geographically closer colonies are genetically closely related and therefore have a more 

homogeneous odor signal (Dimarco et al. 2010). As an alternative hypothesis, workers 

could learn the chemical profile of neighbor colonies (Gordon 1989), via a habituation 

phenomenon. In such situation, neighbors could recognize the cuticular compounds of 
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the neighboring colonies as the persistent odor is experienced repetitively, independently 

of the genetic divergence between them (Dimarco et al. 2010), which ultimately could 

lead ants to modify their aggressive responses during subsequent encounters (Heinze et 

al. 1996; Langen et al. 2000; but see Boulay et al. 2007). This reduced aggression could 

also be explained by the fact that neighboring colonies share the same environmental 

context, including the same diet and nest material, therefore homogenizing their cuticular 

chemical profile (D’Ettorre and Lenoir 2010). Thus, through these mechanisms, two 

sympatric colonies could share more similar colonial odors and be less aggressive towards 

each other than towards distant colonies. 

Recognition cues could be even more complex when hybridization occurs 

between species. Although hybridization is relatively common in ants (Feldhaar et al. 

2008), species discrimination and recognition cues have so far been poorly studied in the 

context of interspecific hybridization (but see Fadamiro et al. 2009; El‐Shehaby et al. 

2011). Investigating the cuticular profiles of hybrids might help to disentangle the 

influence of genes and environment on colony odor (El‐Shehaby et al. 2011). For 

example, in fire ants, Solenopsis invicta x richteri hybrids had cuticular hydrocarbons 

corresponding to a mixture of the parental bouquets (Vander Meer et al. 1985) and were 

more aggressive towards hybrid non-nestmates than either parental species, due to a 

higher variability of genetic recognition cues (Obin & Vander Meer 1989). In such hybrid 

complexes, not only the genetic aspect of discrimination but also the impact of 

environment can be investigated. For example, Purcell et al. (2016) investigated species 

discrimination between Formica selysi and F. cinerea and found strongly differentiated 

cuticular hydrocarbon profiles and heightened interspecific aggression revealing robust 

species recognition cues, but no significant difference in aggression between workers 

from areas of sympatry among species or from areas of allopatry among species. This 

work suggested limited influence of environmental factors on recognition. Hybrid zones 

consequently offer an opportunity to investigate the influence of heritable and 

environmental factors on recognition and to address issues relative to the competitive 

ability of hybrids and parental species (Fadamiro et al. 2009).  
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Building on these premises, we investigate here the strength of discrimination in 

a hybrid zone between Tetramorium immigrans Santschi, 1927 and T. caespitum 

(Linnaeus, 1758) by comparing cuticular hydrocarbon profiles and measuring intra- and 

interspecific worker aggression between workers coming from both areas of sympatry 

and allopatry among species. Tetramorium immigrans is an invasive species in North 

America, where it was introduced in cities in the 19th century or earlier (Steiner et al. 

2006, 2008). Although usually considered native in Europe, Cordonnier et al. (submitted 

in Journal of Animal Ecology) concluded that it may also be invasive in Southeastern 

France. Tetramorium immigrans mainly occur in urban habitats and can hybridize with 

T. caespitum who is present only in rural habitats in latitudes where T. immigrans occur 

(Cordonnier et al. 2018). Hybrids are fertile, leading to a high frequency of hybrid 

colonies in sympatric populations of these species (Cordonnier et al. submitted in JZSER). 

Our main objective was to provide insight into the structure of the hybrid zone and to 

identify factors that may prevent these two closely related species from collapsing into a 

single species. We analyzed chemical recognition cues in 10 pure colonies of T. 

immigrans, 7 pure colonies of T. caespitum and 13 hybrid colonies, as well as behavioral 

discrimination patterns through 273 behavioral assays involving 14 pure colonies of T. 

immigrans, 7 pure colonies of T. caespitum, and 6 hybrid colonies. The study aimed to: 

(i) determine if differentiated cuticular hydrocarbon profiles and heightened interspecific 

aggression reveal that species recognition cues are both present and perceived; (ii) 

provide an assessment of the discrimination of hybrids by individuals from parental 

species through both chemical cues (do hybrids have chemical profiles corresponding to 

a mixture of the parental CHCs?) and behavioral assays (are the species less aggressive 

towards hybrids than towards heterospecifics?); and (iii) evaluate the dear enemy 

phenomenon hypothesis in an interspecific hybridization context in investigating 

differences of aggression between heterospecific workers from areas of sympatry versus 

allopatry among species.  
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METHODS 

Biological model  

The present study focuses on Tetramorium immigrans Santschi, 1927 and T. 

caespitum (Linnaeus, 1758) (Wagner et al. 2017). Hybridization has been shown between 

T. immigrans and T. caespitum (Wagner et al. 2017; Cordonnier et al. 2018, submitted in 

JZSER). These species differ in their ecological specificities – e.g., Cordonnier et al. 

(submitted in Landscape Ecology) indicate that T. immigrans is present in niches 

characterized by higher level of impervious areas (i.e., more urbanized) than niches 

occupied by T. caespitum. The present study is based on colonies precisely located and 

monitored annually, previously genetically identified as T. immigrans, T. caespitum, F1 

hybrids (from male and female of different species), or hybrids backcrossed with T. 

immigrans (T. immigrans males mated with hybrid females) (Cordonnier et al. 2018, in 

prep). All colonies sampled for this study were collected in Southeastern France, in the 

hybrid zone described in Cordonnier et al. (submitted in JZSER), corresponding to the 

area 6 (Mâcon area), 9 (Lyon area) and 13 (Valence area) in Cordonnier et al. (2018) 

(Tables 1 and 2). Sampling was conducted in April 2017 on non-rainy days with 

temperatures ranging from 16 to 25°C. At least 20 individuals from each sampled colony 

were deposited as voucher material in the UCBLZ collection (CERESE, UCBL, 

Université de Lyon). We measured two phenotypic traits linked to species discrimination: 

cuticular hydrocarbon profile (Experiment 1) and aggression between non-nestmate 

workers (Experiment 2). Sampling was performed by teams of two persons by collection 

with a fine-tip flexible forceps (Experiment 1) or an entomological aspirator (Experiment 

2; see sampling details below).  

 

Experiment 1 - Cuticular hydrocarbons (CHCs) 
 

We assessed the cuticular hydrocarbon profiles of three groups of five workers 

per colony from 10 T. immigrans colonies, 7 T. caespitum colonies and 13 hybrid colonies 

including 7 colonies containing only F1 workers and 6 with only backcrossed workers 

(Cordonnier et al. in prep) from three sampling zones which were at least 20 km apart 

(n = 96 samples; Table 1; see Table S1 for colony details).  
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Table 1. Location and taxonomic content of the colony samples used for the Experiment 1. 

 Location 
T. 

immigrans 
colonies 

T. 
caespitum 
colonies 

Colonies 
with F1 
hybrids 

Colonies backcrossed 
with T. immigrans 

Macon 
area 

46°2863.43″N,  
4°9547.77″E 4 2 3 3 

Lyon 
area 

45°7553.93″N,  
4°8525.17″E 3 2 2 2 

Valenc
e area 

44°9320.99″N,  
4°9200.90″E 3 3 2 1 

      
 

The worker groups were weighed (Metler Toledo XP6 with a resolution of 1 μg) 

and frozen at -20°C. We extracted cuticular components by immersing the same 5 

workers three times successively in 50 μl of hexane solution for 10 min including 1 min 

mechanical stirring, and by transferring all 150 μl of this hexane solution and 1 μl of 

internal standard (Squalane 234311 Aldrich C30; 0.5 mg.ml-1) to a new vial. Subsequently 

the solution was evaporated at 35°C for four hours and the vial was stored at 5°C. Before 

the Gas Chromatography – Flame Ionization Detector (GC-FID) analysis, 20 μl of hexane 

were added in the sample and 3 μL of the solution were injected into an Agilent® 7890 

GC-FID gas chromatograph equipped with a DB-5MS column (30 m × 0.25 mm × 

0.25 mm). The gas chromatograph was operated in splitless injection mode and two-layer 

sandwich injection type, with helium used as the carrier gas. The oven temperature was 

set to 80°C and ramped up at 20°C.min-1 to a temperature of 150°C and then at 4°C.min-

1 to a final temperature of 300°C for 20 min. The position and corrected height of each 

CHC peak were assessed in OpenLAB ChemStation Edition C.01.05. Compound were 

identified by Gas chromatography - Mass spectrometry (GC-MS) in the Laboratory of 

Experimental and Comparative Ethology (P. D’Ettore, Université Paris 13). 

All analyses were conducted using R v.3.3 software (R Development Core Team 

2004). Peak areas were reported to a quantity (based on peak area of Squalane 

corresponding to 0.5 μg) and standardized by the sample mass, then square-root 

transformed to reduce the influence of the most abundant variables (Clarke and Warwick 

2001). The mean quantities of each compound over the three replicates in each colony 

were then calculated. Only peaks present in at least 10% of the samples were kept in the 

analysis (Table S2). We first tested the effect of taxa on chemical profile by computing 
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the Euclidian distance between CHC profiles for each sample and compared these 

distances between families using nonparametric (permutational) analysis of variance 

(permanova; package vegan; Oksanen et al. 2013). We then used Principal Component 

Analysis (PCA; package ade4; Dray and Dufour 2007) to identify the peaks most 

contributing to the variation along each axis. We subset the peaks that contributed to 50% 

of the overall variability explained by the three first axes of the PCA and tested again the 

effect of taxa on this subset to ensure that the reduction of the number of variables did not 

modify the result. We also performed a discriminant analysis, using a non-parametric 

version of Pillai’s test to evaluate the significance of the eigenvalues (package ade4; Dray 

and Dufour 2007). Peaks with above-average contributions were considered the best 

candidates for kin-recognition cues.  

 

Experiment 2 - Aggression between workers 
 

We collected at least one thousand worker ants per colony sample from 14 T. 

immigrans colonies, 7 T. caespitum colonies and 6 hybrid colonies including 2 colonies 

with only F1 workers and 4 with only backcrossed workers (identified in Cordonnier et 

al. in prep) from the same three sampling zones used for Experiment 1 (Table 2; see Table 

S3 for colonies details).  

 

Table 2. Locations and distribution across taxa of the colony samples used for Experiment 2. 

 

To evaluate the strength of species discrimination in areas of sympatry among 

species and in areas of allopatry among species, T. immigrans nests were collected in 

areas where T. caespitum occurs (n = 7; corresponding to the hybrid zone described in 

Cordonnier et al. 2018; area of sympatry among species; red area in Fig. 1) and in areas 

 Location 
T. immigrans 

colonies 
(from areas of 

sympatry) 

T. immigrans 
colonies 

(from allopatric 
urban areas) 

T.caespitum 
colonies 

Colonies 
with F1 
hybrids 

Colonies 
backcrossed 

with T. 
immigrans 

Macon 
area 

46°2863.43″N,  
4°9547.77″E 2 2 2 0 3 

Lyon 
area 

45°7553.93″N,  
4°8525.17″E 2 2 2 1 1 

Valence 
area 

44°9320.99″N,  
4°9200.90″E 3 3 3 1 0 



Chapter 4. INTERSPECIFIC HYBRIDIZATION AND INTROGRESSION 

 

 

 
155 

where only T. immigrans occurs (n = 7; area of allopatry among species; green area in 

Fig. 1), i.e., with at least 30% of impervious areas in a 500 m buffer, and defined by 

classes 1.1.1, 1.1.2 and 1.2.1 in Corine Land Cover 2012 (CLC 2012©, Copernicus 

(https://land.copernicus.eu/); Cordonnier et al. 2018; Fig. 1). All the collected colonies 

were kept at 24°C in artificial plastic nests with walls brushed with Fluon® PTFE 

(Polytetrafluoroethylene) to prevent escape (Fig. S1) and were fed with 10% honeyed 

water and dead insects (Gryllus assimilis). 

 

 
Figure 1. Schematic representation of sampling design of colonies. Sampling nests are 
framed. Tetramorium immigrans colonies (red) have been sampled in area of allopatry 
(grey) and in area of sympatry (green) among the two species; T.caespitum and hybrids 
colonies (resp. blue and bicolor) have been collected in the area of sympatry 
corresponding to the hybrid zone described in Cordonnier et al. (submitted in JZSER). 

 

Ant aggressiveness was measured by monitoring five-min pairwise interactions 

between non nestmate workers. We tested the following combinations of workers: T. 

immigrans vs. T. immigrans, T. immigrans vs. Backcrossed, T. immigrans vs. F1 hybrids, 

T. immigrans vs. T. caespitum. For this last category, independently of geographical area, 

we distinguished combinations of T. immigrans from urban areas, i.e. areas of allopatry 

among species vs. T. caespitum and T. immigrans from areas of sympatry among species 

vs. T. caespitum. Pairs of ants were transferred to a Petri dish with sides lined with Fluon. 
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We filmed the interactions for five minutes with a Sony DCR-SX34 camera. For each 

interaction, the aggressiveness score was defined on the following scale (adapted from 

Suarez et al. 1999; Giraud et al. 2002; Boulay et al. 2007): 

- “1” represents no change in direction or speed of movement and no initiation of new 

behavior; 

- “2” represents a non-aggressive touching, usually with the antennae; 

- “3” represents an avoidance behavior, such as a change in walking direction or an 

increase in speed after contact; 

- “4” represents a temporary aggressive behavior, such as biting, pulling, mounting, or 

rearing; 

- “5” represents prolonged fighting. 

For each aggression test (n = 273), we retained the highest aggression score 

(Rosset et al. 2007). Scoring was carried out by two observers who were blind with 

respect to the origins of each combination, with a subset of cases scored by both to ensure 

consistency. As a control, 87 additional tests were performed to ensure the absence of 

intra-nest aggressiveness (n = 27 tests, the maximum score obtained was 2) and the 

replicability of the results over the dyad tested (n = 30 tests, involving 6 dyads 

representative of all the different combinations tested, with 5 replicates per dyads, 80% 

identity of the maximum score obtained, maximum difference of 1 with the score initially 

found) and over time (n = 30, same dyads tested during 10 mn, same scores obtained in 

all cases). To assess the statistical significance of differences in aggression within and 

between species and hybrids, we performed nonparametric Kruskal-Wallis test coupled 

with a chi-square test of independence and Mann-Whitney-Wilcoxon tests as well as 

independence permutation (package coin; Hothorn et al. 2008) for contrasts (including a 

simple Bonferroni correction). To assess if aggressiveness in heterospecific dyads was 

higher when T. immigrans workers came from urban areas compared to sympatric areas, 

we performed unilateral Mann-Whitney-Wilcoxon and independence permutation tests 

(package coin; Hothorn et al. 2008).  
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RESULTS 

Experiment 1 - Cuticular hydrocarbons (CHCs) 

Thirty compounds were identified (Fig. 2; Table S2).We first confirmed that 

chemical profiles depended on taxa (permanova; F = 8.41, df = 3, p-value = 0.001). The 

Principal Component Analysis allowed the identification of 19 peaks contributing to 50% 

of the overall variability explained by the three first axes (Table S2; Fig. 2). 

 

Figure 2. Examples of gas chromatograms of cuticular hydrocarbons for (a) Tetramorium 
caespitum colony (id mac_25) (b) T. immigrans colony (id val_10) and (c) F1 Hybrid 
colony (id lyo_31). The samples were extracted from 5 workers of the same colony. Peaks 
kept in the final analyses are identified by number in black. Peaks 13, 17, 19-21, and 30 
are not identifiable in these gas chromatograms. Identified components: 1: C23; 3: 
3MeC23; 4: C24; 6: C25; 7: 13+11MeC25; 8: 7MeC25; 10: 3MeC25; 12: C26; 18: C27; 22: 
13+11MeC27; 23: 7MeC27. Int. st: squalane internal standard. 
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The permanova on this subset confirmed that the reduction of the number of 

variables did not modify the chemical profile differences across taxa (F = 9.11, df = 3, p-

value = 0.001). The discriminant analysis was significant (non-parametric version of 

Pillai’s test; Obs. = 0.125, Exp. = 0.104, p-value = 0.025) and separated both species 

along the first axis and the hybrids along the second axis (Fig. 3).  

 
Figure 3. Discriminant analysis graphs. (a) Plot of the factorial map of a correlation 
circle. (b) First canonical plane (i.e., two first canonical variates) locating the sampled 
individuals and taxa (50% confidence ellipses). 
 

Peaks with high contributions to axes were considered the best candidates for kin-

recognition cues: CHC2, CHC3 (3MeC23), CHC15, CHC16 and CHC28 were identified 

in T. immigrans, CHC8 (7MeC25), CHC22 (7MeC27), CHC23 and CHC29 in T. 

caespitum, and CHC4 (C24), CHC6 (C25), CHC12 (C26) and CHC18 (C27) in hybrids 

(Figs. 2 and 3; Table 3; Table S2). 
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Table 3. Identification of the main cuticular hydrocarbons (peaks retained for analyses in 
the present study): CHC number; retention time; identity of the compound; proportion of 
each compound in the compounds bouquet for each taxon (T. immigrans, T. caespitum, 
F1 hybrid, Backcross with T. immigrans) 

 
Retention 

time 
Identified 

components T. immigrans T. caespitum 
 

F1 hybrid  
Backcross with 
T. immigrans 

2 29.82 - 1,47% 0,00%  0,14% 0,34% 
3 30.55 3MeC23 1,68% 0,07%  0,81% 0,73% 
4 31.08 C24 0,90% 0,56%  1,04% 0,82% 
6 33.01 C25 9,82% 12,20%  15,20% 13,76% 
7 33.65 13+11MeC25 18,39% 7,52%  10,91% 12,69% 
8 33.78  7MeC25 1,59% 6,94%  2,65% 3,35% 
9 33.94 - 1,08% 1,18%  1,40% 1,50% 

11 34.53 3MeC25 0,50% 0,86%  0,48% 0,55% 
12 34.85 C26 1,17% 1,12%  1,59% 1,61% 
14 35.45 - 2,44% 1,23%  1,63% 1,75% 
15 36.03 - 1,21% 0,04%  0,77% 0,51% 
16 36.21 - 10,86% 1,52%  7,82% 8,94% 
18 36.63 C27  3,89% 5,71%  6,20% 6,74% 
22 37.35 13+11MeC27  0,28% 8,90%  3,75% 4,01% 
23 37.51 7MeC27  0,36% 1,95%  1,08% 1,30% 
25 37.91 - 3,99% 5,34%  4,38% 4,61% 
26 38.06 - 4,40% 3,89%  3,49% 4,03% 
28 39.4 - 1,45% 0,04%  0,72% 0,79% 
29 40.53 - 0,05% 2,07%  0,54% 0,40% 
 

Experiment 2 - Aggression between workers 

Aggression was different between dyads involving T. immigrans vs. T. immigrans, 

T. immigrans vs. backcrossed, T. immigrans vs. F1 hybrids, and T. immigrans vs. T. 

caespitum (KW test : χ² = 28.65, df = 3, p-value = 2.6 × 10-6; χ² = 48.03, df = 12, p = 

3.1 × 10-6). T. immigrans vs. T. immigrans resulted in a lower aggressiveness than T. 

immigrans vs. Hybrids F1 (Mann-Whitney-Wilcoxon test: W = 744, p = 0.003; 

permutation test: z = -3.43, p = 0.0036) and T. immigrans vs. T. caespitum (W = 2714.5, 

p = 9.2 × 10-6; z = -4.79, p = 1.01 × 10-6) (Fig. 4b). Aggressiveness in heterospecific 

dyads was significantly higher when T. immigrans workers come from urban areas (areas 

of allopatry among species) than from area of sympatry among species according to the 

unilateral Mann-Whitney-Wilcoxon test (W = 956, p = 0.034), but non-significantly 

according to the permutation test (z = -1.42, p = 0.16) (Fig. 4c).   
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Figure 4. Results of the aggression tests carried out between T. immigrans, T. caespitum, 
F1 hybrids and backcrossed hybrids. (a) Aggression scores (1-5) and associated typical 
postures. Comparison of aggression scores (b) within T. immigrans and between T. 
immigrans and other taxa, and (c) between T. caespitum and T. immigrans coming from 
area of sympatry among species (left) or allopatry among species (right). Thick black 
horizontal line: median value; box ends: upper and lower quartiles; whiskers: max and 
min values. Horizontal dashed line represents the threshold of aggressiveness beyond 
which the behavior is considered antagonistic. Letters a, b indicate the results of the 
nonparametric Mann-Whitney-Wilcoxon tests; letters A, B indicate the results of the 
permutation tests (different letters when the difference of scores between the dyads is 
significant at the 0.05 Bonferroni-corrected level).  
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DISCUSSION 

The study aimed to provide insights into interspecific hybridization mechanisms 

through the recognition system in ants, and to explore whether recognition cues may 

prevent closely related species from collapsing into a single species within a hybrid zone. 

We determined that differentiated cuticular hydrocarbon profiles and heightened 

interspecific aggression reveal strong species recognition cues. Moreover, hybrids had 

cuticular hydrocarbon profiles corresponding to a mixture of the parental bouquets, but 

their chemical signal also featured compounds present only in trace amounts in both 

parental species. Behavioral assays showed that T. immigrans was as aggressive towards 

hybrids as towards heterospecifics. Finally, the dear enemy phenomenon hypothesis was 

partially verified as aggression between heterospecific workers was higher when 

protagonists came from areas of allopatry among species than from areas of sympatry 

among species.  

 

Strongly differentiated cuticular hydrocarbon profiles and heightened 

interspecific aggression further reveal that species recognition cues are both present and 

perceived between Tetramorium immigrans and T. caespitum. Steiner et al. (2002) 

categorized CHCs of individuals morphologically determined as T. caespitum but this 

study was performed before the discovery of rampant cryptic diversity within the genus 

(Schlick-Steiner et al. 2006) by Self-Organizing Maps. Schlick-Steiner et al. (2006) then 

re-analyzed these data with more accurate mtDNA-based species identification and 

showed that T. caespitum was different from T. sp. E (now called T. immigrans; Wagner 

et al. 2017) but did not identify which chemical compounds were implicated in these 

differences, and did not investigate the chemical profile of T. sp. U2 (corresponding to T. 

caespitum ants of the present study; Wagner et al. 2017). Sano et al. (2018) combined 

behavioural tests and CHCs assessments to investigate the use of CHCs in recognition of 

conspecifics vs. heterospecifics in a Tetramorium species (that they called Tetramorium 

caespitum in their paper but according to the geographical location, it is more likely T. 

immigrans, as T. caespitum only occurs in Europe according to the literature and because 

T. immigrans and T. tsushimae are the only pavement ants described so far from North 

America; Schlick-Steiner et al. 2006, Steiner et al. 2006, Wagner et al. 2017, Steiner et 
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al. 2008; note that the comparison of the cuticular profiles obtained by Sano and those 

presented in Fig. 2 seems to corroborate this hypothesis). Our results clearly show that T. 

immigrans can strongly differentiate conspecifics from heterospecifics (both T. caespitum 

and hybrids). Quite to the contrary, T. immigrans (= T. caespitum sensu Sano et al. 2018) 

responded with same levels of aggression to conspecific and heterospecific non-nestmates 

in the study of Sano et al. (2018), suggesting that T. immigrans workers simply exclude 

all non-nestmate ants regardless of their species. However, the heterospecific species they 

tested (Pogonomyrmex occidentalis and Camponotus modoc) were phylogenetically very 

distant from T. immigrans compared to T. caespitum or with F1 hybrids in the present 

study. Perhaps a higher intraspecific aggression in North America than in France could 

explain why these authors did not detect any difference in aggression level towards con- 

and heterospecific non-nestmates. The non-nestmates discrimination have been suggested 

to be founded on the relative abundance of methyl-branched alkanes and n-alkenes (Sano 

et al. 2018). Guerreri et al. (2009) showed that only dimethylated alkanes were effective 

in eliciting aggression. It would be relevant to identify all the compounds involved in our 

study to compare these different systems and to measure the signal reproducibility. 

 

In T. immigrans and T. caespitum, the increased aggression towards 

heterospecifics may play a role in speciation, as high levels of aggression between species 

may result in interspecific exclusion, biased mating and possibly reduced fitness of hybrid 

colonies (Purcell et al. 2016). Therefore, it could be relevant to further investigate the 

recognition cues in reproductives, although this may prove to be difficult as identification 

of these taxa is based on genetic methods that are destructive of individuals which cannot 

be further used for CHC extraction or behavioral assays. It would therefore be worth 

identifying CHCs in males and gynes. If species are able to discriminate the identity of 

the partner, how is interspecific hybridization maintained? The result we obtained here 

could be contrasted for males and females at a time of mating because inside the mating 

swarms, more exchanges of CHCs with other reproductives that come into physical 

contact could homogenize their profiles and reduce their ability to use species-specific 

differences (Herrmann 2016). Consequently, accurate identification of the potential 

mates' species before copulation could be undermined. In the absence of pre-copulatory 

cues, males may benefit from maximizing mating frequency as breeding with a wrong 
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partner could have a more negligible consequence on fitness if females mate with multiple 

males (El-Shehaby et al. 2011, Suni and Eldakar 2011). When unable to measure in situ 

the chemical profile of individuals, the study of polyandry and mate choice in these 

species could therefore constitute a first step to resolve the hypothesis of a lack of 

discrimination of the species during mating. 

 

The higher levels of aggression between T. immigrans and T. caespitum when 

heterospecific protagonists come from areas of allopatry among species (i.e. when T. 

immigrans come from urban core) could indicate an environmental component in the 

cuticular profile. Some of the recent studies about relations between environment and 

aggressive behavior revealed correlations (e.g., Benedek and Kobori 2014; Frizzi et al. 

2015) while others did not (e.g., Langen et al. 2000; Martin et al. 2012). One of the 

environmental factors involved in such potential changes in aggressiveness is the 

modification of the cuticular compounds in highly polluted urban habitats. Exposure to 

heavy metals can increase or decrease aggression towards non-nestmates, for example in 

Formica aquilonia exposed to long-term pollution showing higher heavy metal 

concentrations and being less aggressive towards foreign unpolluted colony (Sorvari and 

Eeva 2010). Moreover, these urbanized areas may be less resource-rich, increasing 

competition for food, and thus aggressiveness (Sorvari & Hakkarainen 2004). 

Nevertheless, other environmental factors could also be involved. For example, in 

Iridomyrmex purpureus, non-nestmate aggression was influenced by the density of 

surrounding conspecific nests, inducing more aggressive behavior when nest density was 

higher (Thomas et al. 1999). 

 

Behavioral assays showed here that T. immigrans is as aggressive towards hybrids 

as towards heterospecifics. On the contrary,  Fadamiro et al. (2009) showed that 

Solenopsis invicta exhibited more aggression towards S. richteri than towards hybrids. 

Regarding the chemical signals, our results are consistent with the findings of El‐Shehaby 

et al. (2011) which suggest that the CHCs profiles of Temnothorax nylanderi x 

crassispinus hybrids were not consistently intermediate between those of the paternal 

species, suggesting either non‐additive interactions among the parental biosynthetic 

pathways or systematic differences in environment‐derived odor cues. In the carpenter 
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ant Camponotus herculeanus, the presence, but not the absence, of an additional 

hydrocarbon elicited aggression (Guerreri et al. 2009). This result is consistent with our 

findings that all chemical components of paternal species were found in hybrids (with 

variations in quantities) but one compound (CHC12, C26) was found in larger amount in 

hybrids and could be responsible of such a pattern.  

 

Taken as a whole, these findings paint a particularly complex picture of the 

recognition system of Tetramorium immigrans, T. caespitum and their hybrids. In cases 

of interspecific hybridization, the present study highlights the necessity of investigating 

species discrimination and recognition cues in every compartment of the system, 

including hybrids. Although poorly studied in a context of discrimination of 

heterospecifics in the literature, findings of our study clearly showed that hybrid zones 

offer a unique opportunity to deeply investigate recognition mechanisms and 

discrimination between species.  

 

ACKNOWLEDGEMENTS 

This study was funded by the Conseil Départemental de l’Isère. It was also supported by 
the French National Research Agency (ANR) through the LABEX IMU (ANR-10-
LABX-0088) of Université de Lyon, within the program "Investissements d’Avenir" 
(ANR-11-IDEX-0007). We especially thanks Fabio Perruchet and Emeline Lebecq for 
their help in conducting behavioural assays, and Nicolas Ferry for his graphical 
contribution. We also thank Patrizzia D’Ettore, Vincent Grossi, and Ingrid Antheaume 
for their invaluable help for chemical analyses.    



Chapter 4. INTERSPECIFIC HYBRIDIZATION AND INTROGRESSION 

 

 

 
165 

REFERENCES 

Benedek K, Kobori OT. 2014. 'Nasty neighbour' effect in Formica pratensis 
Retz.(Hymenoptera: Formicidae). North-Western Journal of Zoology. 10: 245-250. 

Boulay R, Cerdá X, Simon T, Roldan M, Hefetz A. 2007. Intraspecific competition in the 
ant Camponotus cruentatus: should we expect the ‘dear enemy’effect?. Anim Behav. 
74: 985-993. 

Chapuisat M, Bernasconi C, Hoehn S, Reuter M. 2005. Nestmate recognition in the 
unicolonial ant Formica paralugubris. Behav Ecol. 16: 15-19.  

Chen JSC, Nonacs P. 2000. Nestmate Recognition and Intraspecific Aggression Based 
on Environmental Cues in Argentine Ants (Hymenoptera: Formicidae). Ann Entomol 
Soc Am. 93: 1333–1337. 

Clarke KR, Warwick RM. 2001. A further biodiversity index applicable to species lists: 
variation in taxonomic distinctness. Mar Ecol Prog Ser. 216: 265-278.  

Cordonnier M, Bellec A, Dumet A, Escarguel G, Kaufmann B. 2018. Range limits in 
sympatric cryptic species: a case study in Tetramorium pavement ants (Hymenoptera: 
Formicidae) across a biogeographical boundary. Insect Conserv Divers. doi 
10.1111/icad.12316 

Cordonnier M, Gayet T, Escarguel G, Kaufmann B. From hybridization to introgression 
between two closely related sympatric ant species. Submitted in J Zool Syst Evol Res.  

Cordonnier M, Bellec A, Escarguel G, Kaufmann B. Effect of the urbanization-climate 
interaction on the expansion of the pavement ant in South-eastern France. Submitted 
in Oecologia 

Cordonnier M, Gibert C, Bellec A, Kaufmann B, Escarguel G. Spatial scaling of the 
impacts of urbanization on species distribution within the genus Tetramorium. 
Submitted in Landsc Ecol. 

Cordonnier M, Escarguel G, Dumet A, Kaufmann B. Multiple mating and sexual 
selection in the context of interspecific hybridization between two Tetramorium ant 
species. In prep for Evolution. 

D’Ettorre P, Lenoir A. 2010. Nestmate recognition. Ant ecology. 194-209. 
D’Ettorre P, Deisig N, Sandoz JC. 2017. Decoding ants’ olfactory system sheds light on 

the evolution of social communication. Proc Natl Acad Sci U S A. 114: 8911-8913. 
Dimarco RD, Farji-Brener AG, Premoli AC. 2010. Dear enemy phenomenon in the leaf-

cutting ant Acromyrmex lobicornis: behavioral and genetic evidence. Behav Ecol. 21: 
304-310.  

Dray S, Dufour AB. 2007. The ade4 package: implementing the duality diagram for 
ecologists. J. Stat. Softw. 22: 1-20. 

Dronnet S, Lohou C, Christides J-P, Bagnères A-G. 2006. Cuticular hydrocarbon 
composition reflects genetic relationship among colonies of the introduced termite 
Reticulitermes santonensis feytaud. J Chem Ecol. 32: 1027–1042.  

El‐Shehaby M, Salama MS, Brunner E, Heinze J. 2011. Cuticular hydrocarbons in two 
parapatric species of ants and their hybrid. Integr Zool. 6: 259-265. 



Chapter 4. INTERSPECIFIC HYBRIDIZATION AND INTROGRESSION 

 

 

 
166 

Fadamiro HY, He X, Chen L. 2009. Aggression in imported fire ants: an explanation for 
shifts in their spatial distributions in Southern United States?. Ecol Entomol. 34: 427-
436. 

Feldhaar H, Foitzik S, Heinze J. 2008. Lifelong commitment to the wrong partner: 
hybridization in ants. Philos Trans R Soc Lond B Biol Sci. 363: 2891-2899.  

Frizzi F, Ciofi C, Dapporto L., Natali C, Chelazzi G, Turillazzi S, Santini G. 2015. The 
rules of aggression: how genetic, chemical and spatial factors affect intercolony fights 
in a dominant species, the mediterranean acrobat ant Crematogaster scutellaris. PloS 
one. 10 e0137919. 

Giraud T, Pedersen JS, Keller L. 2002. Evolution of supercolonies: the Argentine ants of 
southern Europe. Proc Natl Acad Sci U S A. 99: 6075-6079. 

Gordon DM. 1989. Ants distinguish neighbors from strangers. Oecologia. 81: 198-200. 
Guerrieri FJ, Nehring V, Jørgensen CG, Nielsen J, Galizia CG, D'Ettorre P. 2009. Ants 

recognize foes and not friends. Proc R Soc Lond B Biol Sci. 276: 2461-2468. 
Heinze J, Foitzik S, Hippert A, Hölldobler B. Apparent Dear-enemy Phenomenon and 

Environment-based Recognition Cues in the Ant Leptothorax nylanderi. Ethology. 
1996; 102: 510–522. 

Herrmann M. 2016. Sexual conflict and chemical communication in hybridizing harvester 
ants (Doctoral dissertation, The University of Vermont and State Agricultural 
College). 

Hölldobler B, Wilson EO. 1990. The ants. Harvard University Press. 
Holway DA, Suarez AV. 1999. Animal behavior: an essential component of invasion 

biology. Trends Ecol Evol. 14: 328-330.  
Hothorn T, Hornik K, Van De Wiel MA, Zeileis A. 2008. Implementing a class of 

permutation pests: the coin package.  
Langen TA, Tripet F, Nonacs P. 2000. The red and the black: habituation and the dear-

enemy phenomenon in two desert Pheidole ants. Behav Ecol Sociobiol. 48: 285-292. 
Lenoir A, D'Ettorre P, Errard C. Hefetz A. 2001. Chemical ecology and social parasitism 

in ants. Annu Rev Entomol. 46: 573-599.  
Liang D, Silverman J. 2000. “You are what you eat”: Diet modifies cuticular 

hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. 
Naturwissenschaften. 87: 412-416.  

Martin S, Trontti K, Shemilt S, Drijfhout F, Butlin R, Jackson D. 2012. Weak patriline 
effects are present in the cuticular hydrocarbon profiles of isolated F ormica exsecta 
ants but they disappear in the colony environment. Ecol evol. 2: 2333-2346. 

Obin MS, Vander Meer RK. 1989. Between-and within-species recognition among 
imported fire ants and their hybrids (Hymenoptera: Formicidae): Application to 
hybrid zone dynamics. Ann Entomol Soc Am. 82: 649-652. 

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, ..., Oksanen MJ. 
2013. Package ‘vegan’. Community ecology package, version, 2. 

Passera L. 1994. Characteristics of tramp species. Exotic Ants. Biology and Impact, and 
Control of Introduced Species. 23-43.  

Purcell J, Zahnd S, Athanasiades A, Türler R, Chapuisat M, Brelsford A. 2016. Ants 
exhibit asymmetric hybridization in a mosaic hybrid zone. Mol ecol. 25: 4866-4874. 



Chapter 4. INTERSPECIFIC HYBRIDIZATION AND INTROGRESSION 

 

 

 
167 

Rosset H, Schwander T, Chapuisat M. 2007. Nestmate recognition and levels of 
aggression are not altered by changes in genetic diversity in a socially polymorphic 
ant. Anim Behav. 74: 951-956. 

Sano K, Bannon N, Greene MJ. 2018. Pavement Ant Workers (Tetramorium caespitum) 
Assess Cues Coded in Cuticular Hydrocarbons to Recognize Conspecific and 
Heterospecific Non-Nestmate Ants. J Insect Behav. 1-14. 

Schlick-Steiner BC, Steiner FM, Moder K, Seifert B, Sanetra M, Dyreson E, ... Christian 
E. 2006. A multidisciplinary approach reveals cryptic diversity in Western Palearctic 
Tetramorium ants (Hymenoptera: Formicidae). Molec Phylogenet Evol. 40: 259-273. 

Sorvari J, Hakkarainen H. 2004. Habitat-related aggressive behaviour between 
neighbouring colonies of the polydomous wood ant Formica aquilonia. Anim Behav. 
67: 151-153.  

Sorvari J, Eeva T. 2010. Pollution diminishes intra-specific aggressiveness between wood 
ant colonies. Sci Total Environ. 408: 3189-3192. 

Steiner FM, Schlick-Steiner BC, Nikiforov A, Kalb R, Mistrik R. 2002. Cuticular 
hydrocarbons of Tetramorium ants from Central Europe: analysis of GC-MS data 
with self-organizing maps (SOM) and implications for systematics. J Chem Ecol. 28: 
2569-2584. 

Steiner FM, Schlick-Steiner BC, Trager JC, Moder K, Sanetra M, Christian E, Stauffer 
C. 2006. Tetramorium tsushimae, a new invasive ant in North America. Biol Inv. 8: 
117-123. 

Steiner FM, Schlick‐Steiner BC, VanDerWal J, Reuther KD, Christian E, Stauffer C, ... 
Crozier RH. 2008. Combined modelling of distribution and niche in invasion biology: 
a case study of two invasive Tetramorium ant species. Divers Distrib. 14: 538-545. 

Suarez AV, Tsutsui ND, Holway DA, Case TJ. 1999. Behavioral and genetic 
differentiation between native and introduced populations of the Argentine ant. Biol 
Inv. 1: 43-53.  

Suni SS, Eldakar OT. 2011. High mating frequency and variation with lineage ratio in 
dependent-lineage harvester ants. Insectes Soc. 58: 357-364. 

Thomas ML, Parry LJ, Allan RA, Elgar MA. 1999. Geographic affinity, cuticular 
hydrocarbons and colony recognition in the Australian meat ant Iridomyrmex 
purpureus. Naturwissenschaften. 86: 87-92. 

Tsutsui ND, Suarez AV. 2003. The colony structure and population biology of invasive 
ants. Cons Biol. 17: 48-58. 

Vander Meer RK, Lofgren CS, Alvarez FM. 1985. Biochemical evidence for 
hybridization in fire ants. Fla Entomol. 501-506.  

Wagner HC, Arthofer W, Seifert B, Muster C, Steiner FM, Schlick-Steiner BC. 2017. 
Light at the end of the tunnel: Integrative taxonomy delimits cryptic species in the 
Tetramorium caespitum complex (Hymenoptera: Formicidae). Myrmecol News. 25: 
95-129. 

Wilson E0. 1975. Sociobiology. Belknap Press of Harvard Univ. Press, Cambridge, 
Massachusetts, ix + 697 pp. 

  



Chapter 4. INTERSPECIFIC HYBRIDIZATION AND INTROGRESSION 

 

 

 
168 

SUPPORTING INFORMATION 

Table S1. List of colonies used for chemical analyses, with type, name, areas of origin 
(Symp: S = nest in area of sympatry among species; A = nest in area of allopatry among 
species), percentage of impervious areas in a buffer of 500 m around the nest, location 
(X, Y) and classes in Corine Land Cover 2012; CLC 2012©, Copernicus 
(https://land.copernicus.eu/) 
 

Colony type Colony name Symp PI500 Y X CLC12 

T. immigrans lyo_07 S 5.92 45.6795 5.0149 211 
T.caespitum lyo_13 S 2.45 45.6536 5.0709 122 

Backcross with T. immigrans lyo_30 S 0.59 45.6601 5.0445 211 
F1 Hybrid lyo_31 S 0.03 45.6490 5.0492 211 

T.caespitum lyo_32 S 0.06 45.6484 5.0591 211 
Backcross with T. immigrans lyo_42 S 32.68 45.6768 4.9689 121 

T. immigrans lyo_50 S 1.57 45.6476 5.0341 211 
T. immigrans lyo_83 A 37.78 45.7811 4.8675 121 

F1 Hybrid mac_07 S 8.46 46.3273 4.9075 242 
F1 Hybrid mac_10 S 4.33 46.3277 4.9355 112 

T.caespitum mac_21 S 2.12 46.3412 5.0341 231 
Backcross with T. immigrans mac_22 S 1.67 46.3089 4.8532 231 

T.caespitum mac_25 S 13.40 46.3141 4.8802 112 
T. immigrans mac_34 S 10.53 46.3184 4.9410 242 
T. immigrans mac_41 S 13.31 46.3134 4.9320 231 

Backcross with T. immigrans mac_43 S 4.31 46.3025 4.8639 112 
Backcross with T. immigrans mac_54 S 2.89 46.3136 4.9728 242 

F1 Hybrid mac_68 S 64.50 46.2885 4.8169 121 
T. immigrans mac_75 A 54.71 46.3091 4.8206 121 
T. immigrans mac_81 A 43.95 46.3199 4.8300 112 
T.caespitum val_03 S 2.08 44.9499 4.9548 242 

F1 Hybrid val_08 S 1.19 44.9488 5.0016 211 
T. immigrans val_10 S 2.21 44.9600 5.0231 211 
T.caespitum val_18 S 1.51 44.9776 5.0949 211 

F1 Hybrid val_28 S 0.39 44.9534 5.0049 211 
T.caespitum val_35 S 2.35 44.9608 5.0670 211 

T. immigrans val_62 A 63.12 44.9414 4.8935 112 
Backcross with T. immigrans val_76 S 40.34 44.9130 4.8786 112 

T. immigrans val_79 S 37.11 44.9284 4.8835 112 
F1 Hybrid vil_20 S 0.74 46.0080 4.9497 231 
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Table S2. List of colonies used for chemical analyses, with type, name, and quantity (μg) 

of each chemical compound identified in the samples.  
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Table S3. List of colonies used for behavioral analyses, with type, name, areas of origin 
(Symp: S = nest in area of sympatry among species; A = nest in area of allopatry among 
species), percentage of impervious areas in a buffer of 500 m around the nest, location 
(X, Y) and classes in Corine Land Cover 2012; CLC 2012©, Copernicus 
(https://land.copernicus.eu/) 
 

Colony type Colony name Symp PI500 X Y CLC12 

T. immigrans lyo_07 S 5.92 5.0149 45.6795 211 
T.caespitum lyo_13 S 2.45 5.0709 45.6536 122 

T. immigrans lyo_28 S 0.70 5.0276 45.6638 211 
F1 Hybrid  lyo_31 S 0.03 5.0492 45.6490 211 

T.caespitum lyo_32 S 0.06 5.0591 45.6484 211 
Backcross with T. immigrans lyo_42 S 32.68 4.9689 45.6768 121 

T. immigrans lyo_78 A 40.52 4.9370 45.7660 121 
T. immigrans lyo_83 A 37.78 4.8675 45.7811 121 
T.caespitum mac_21 S 2.12 5.0341 46.3412 231 

Backcross with T. immigrans mac_22 S 1.67 4.8532 46.3089 231 
T.caespitum mac_25 S 13.40 4.8802 46.3141 112 

T. immigrans mac_34 S 10.53 4.9410 46.3184 242 
T. immigrans mac_41 S 13.31 4.9320 46.3134 231 

Backcross with T. immigrans mac_46 S 8.12 4.8877 46.3066 231 
Backcross with T. immigrans mac_54 S 2.89 4.9728 46.3136 242 

T. immigrans mac_75 A 54.71 4.8206 46.3091 121 
T. immigrans mac_77 A 40.31 4.8171 46.3207 112 
T. immigrans mac_81 A 43.95 4.8300 46.3199 112 
T.caespitum val_03 S 2.08 4.9548 44.9499 242 

F1 Hybrid  val_08 S 1.19 5.0016 44.9488 211 
T. immigrans val_10 S 2.21 5.0231 44.9600 211 
T.caespitum val_18 S 1.51 5.0949 44.9776 211 
T.caespitum val_35 S 2.35 5.0670 44.9608 211 

T. immigrans val_53 S 1.14 5.0503 44.9536 211 
T. immigrans val_62 A 63.12 4.8935 44.9414 112 
T. immigrans val_79 S 37.11 4.8835 44.9284 112 
T. immigrans val_86 A 40.36 4.8998 44.9165 112 
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Figure S1. Schematic presentation of artificial nest boxes;  walls are brushed with 
Fluon® PTFE (Polytetrafluoroethylene) to prevent escape (grey walls); the nest 
corresponds to a glass test tube covered by a red filter and a water reservoir for humidity. 
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PAPER 6. Multiple mating and sexual selection in the context of interspecific 

hybridization between two Tetramorium ant species 

This article is in prep. for a submission in Evolution 
 
Marion Cordonnier1*, Gilles Escarguel1, Adeline Dumet1, Bernard Kaufmann1 

 
1 : Université Claude Bernard Lyon 1, CNRS UMR5023 LEHNA – Villeurbanne – France 
 
Abstract 

In eusocial Hymenoptera, haplodiploidy and polyandry may facilitate selection for 

hybridization. Interspecific hybridization is common and widespread in ants and can lead 

to hybrid unviability as well as the formation of new species through hybrid speciation. 

However, in ants, polyandry is relatively uncommon. Analyzing microsatellite markers 

on 15 ant workers per colony, we show that the mating system of 28 pure colonies of 

Tetramorium immigrans, 15 pure colonies of T. caespitum and 27 hybrid colonies is a 

monogyne/polyandrous mating system, with a higher mating rate in T. caespitum. Hybrid 

queens, but no hybrid fathers, were deduced from workers’ genotypes, in accordance to 

Haldane’s rule extended to haplodiploid organisms, which states that the haploid sex 

should more often be sterile or inviable. In four colonies, hybridization and multiple 

mating allowed the simultaneous production of both hybrid and nonhybrid offspring. 

Although rare, these situations hinted at asymmetrical contributions to offspring in favor 

of heterospecific vs. conspecific males in colonies with a T. caespitum queen. Together, 

these findings point towards a complex and dynamic mating system in Tetramorium 

immigrans and T. caespitum and should contribute to better understand interspecific 

hybridization mechanisms and their consequences on genetic and taxonomic diversity. 

The study of polyandry within a hybrid zone is unprecedented and open the opportunity 

to investigate the selective processes involved in the evolution of multiple mating.  

 

Keywords: Haplodiploidy, Hybridization, Introgression, Mating system, Multiple 

mating, Polyandry, Sexual selection, Social insects, Tetramorium 
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INTRODUCTION 

Interspecific hybridization is common and widespread in ants (Feldhaar et al., 

2008), and has been described for years in numerous genera, e.g., Solenopsis (Ross et al., 

1987), Formica (Kulmuni et al., 2010; Purcell et al., 2016), Lasius (Van der Have et al., 

2011), Pogonomyrmex (Kronauer et al., 2011) or Tetramorium (Steiner et al., 2010; 

Cordonnier et al., 2018). The impacts of hybridization can range from hybrid unviability 

or sterility to reverse speciation, through adaptive introgression and even the formation 

of new species through hybrid speciation (Beresford et al., 2017).  

In ants and other eusocial Hymenoptera, combinations of mechanisms involved 

in reproductive behavior may facilitate selection for hybridization, including haplodiploid 

sex determination systems and polyandry (Anderson et al., 2008). On the one hand, the 

haplodiploid reproductive system, where haploid males from unfertilized eggs only 

inherit maternal genetic material, can mitigate outbreeding depression compared to other 

organisms, as male fitness is preserved at the F1 generation because diploid queens which 

have mated with heterospecific haploid males still produce purebred sons via 

arrhenotokous parthenogenesis (Feldhaar et al., 2008; Kulmuni et al., 2010; Kronauer et 

al., 2011). When hybrids are fertile, truly hybrid males therefore only appear in 

backcrosses (Schilthuizen et al., 2011; Kronauer et al., 2011). Haploid males are 

particularly likely to show hybrid incompatibilities (Koevoets & Beukeboom, 2009), and 

some species have therefore evolved elaborate mechanisms to avoid producing hybrid 

males (e.g., Kulmuni et al., 2010; Kulmuni & Pamilo, 2014). On the other hand, eusocial 

Hymenoptera generally form colonies that contain a single reproductive queen and many 

sterile worker individuals. In ant species, gynes (virgin reproductive females) either mate 

only once (monandry) or several times (polyandry) (Heinze 2008). Polyandry is relatively 

uncommon in ants (reviewed in Strassmann 2001; Villesen et al., 2002 but see 

Haapaniemi & Pamilo, 2012; Hardy et al., 2008). However, Anderson et al. (2008) 

pointed out that polyandry can increase genetic diversity of workers, and morphological, 

behavioral, or physiological variation among workers and thus raise colony fitness and 

provide benefits from heterosis in hybrid workers, resulting in positive selection for 

hybridization. In eusocial insects there obviously is a pre-copulatory mate-choice phase, 

but it involves a very restricted set of mate quality cues (Boomsma, 2013). In cases of 

interspecific hybridization combined with polyandry, considering mate choice is 



Chapter 4. INTERSPECIFIC HYBRIDIZATION AND INTROGRESSION 

 

 

 
175 

particularly relevant. Being able to breed with a male of another species increases the 

probability of finding one (or more) partner(s) and could thus even prove reproductively 

advantageous (Rosenthal, 2013). Nonacs (2006) pointed out that when population 

densities are low, females may not always be able to encounter conspecific males, and 

hybridization may be a “best of a bad situation” strategy to gain some reproductive 

success. Alternatively, a lack of mate preference and high levels of polyandry should 

result in the production of both F1 hybrid and nonhybrid offspring within the same colony 

(Anderson et al., 2008).  

In ants as in many species with internal fertilization, females possess a 

spermatheca, which is a specialized storage organ where sperm is stored between 

insemination and egg fertilization. Polyandry therefore results in the co-occurrence of 

different ejaculates in the female's reproductive tract (Jaffé et al., 2012) allowing sexual 

selection to operate after copulation. Mechanisms for post-copulatory sexual selection, 

which lead to biased paternity patterns, include sperm competition, where ejaculates from 

different males compete to fertilize eggs (Simmons, 2001; but see Boomsma, 2013) and 

cryptic female choice, where females influence which permanently stored sperm fertilize 

their eggs (Eberhard, 1996). In situations of hybridization between species, potentially 

negative consequences of hybridization can therefore be mitigated or even avoided when 

hybrid individuals mostly or exclusively become non-reproductive workers (Kronauer et 

al., 2011), or if fewer hybrid individuals are produced than purebred individuals, because 

of sexual selection processes, genetic caste determination (Nonacs, 2006), or fitness 

decrease or increase (Umphrey, 2006). In this last situation, selective processes unrelated 

to sexual selection can alter the viability or fitness of hybrid offspring. For example, 

Umphrey (2006) highlighted that if a species A queen had mated with both species A and 

B males, any of these mechanisms could act to select among female immatures so that a 

disproportionately higher share of gynes (relative to the proportion of species A sperm 

stored in the queen’s spermatheca) are pure species A (e.g., if hybrid gynes are smaller 

and grow slower, they might be weeded out as larvae from becoming gynes). In addition, 

as both beneficial and deleterious recessive allelic combinations are selected more 

strongly in haploid males than diploid females, the potential differential selection between 

males and females (Beresford, 2017) can induce asymmetrical sex-ratio in hybrid 

offspring. Such selective process can also be advantageous to hybrids and affect the sterile 
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worker caste. Indeed, one species may exhibit higher fitness for a number of traits, such 

as resistance to pathogens or different microhabitat niche, so that hybrid workers 

inheriting ameliorated traits would be of greater benefit to a queen (Umphrey, 2006), 

leading to survival bias favoring hybrid workers inside a colony. 

The questions related to mate choice, sperm competition and cryptic female choice 

in polyandrous eusocial Hymenoptera therefore often differ from those addressed in non-

eusocial mating systems, but their originality may allow experimental tests of the 

generality of sexual selection theory that cannot be performed in mating systems with re-

mating promiscuity (Boomsma, 2007). Although the processes involved are complex, 

such questions become even more exciting when considering systems involving 

interspecific hybridization. The present study investigates such mechanisms in two 

monogynous Tetramorium cryptic species, namely Tetramorium immigrans Santschi, 

1927 and T. caespitum (Linnaeus, 1758). Tetramorium immigrans and T. caespitum can 

hybridize (Wagner et al., 2017), and hybrids are fertile, leading to a high frequency of 

hybrid colonies in sympatric populations of these species (Cordonnier et al., submitted to 

Heredity). In the present paper, we analyze polyandry, mate choice biases and 

asymmetrical contributions to offspring, by investigating mating system in 28 pure 

colonies of T. immigrans, 15 pure colonies of T. caespitum and 27 hybrid colonies. Our 

main objective was to test if both hybrid queens and males reproduce. The study aimed 

to: (1) determine whether hybridization correlate to the polyandrous mating system of 

parental species; (2) provide an assessment of the bias in offspring production in hybrid 

colonies (e.g., capability of hybrids of both sexes to reproduce, production of both F1 

hybrid and nonhybrid offspring within the same colony); and (3) verify the hypothesis of 

random paternity allocation between species, i.e., the random contribution of males to the 

offspring, opposite to the existence of potential mechanisms of post-copulatory sexual 

selection biasing worker paternity in colonies. 

 

METHODS 

The present study focuses on Tetramorium immigrans Santschi, 1927 and T. 

caespitum (Linnaeus, 1758), two cryptic species of the Tetramorium caespitum complex 

distinguishable using genetic (Cytochrome Oxidase I analysis, nuclear AFLP markers) 

and morphometric characters on workers (Wagner et al., 2017). 
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Microsatellite data 

Cordonnier et al. (2018) collected workers of 544 colonies of T. immigrans, 698 

colonies of T. caespitum, and 240 colonies of potential hybrids between T. immigrans and 

T. caespitum in southeastern France. For each colony, one worker had been identified using 

a two-step approach combining nuclear DNA clustering (14 microsatellite markers) and 

species identification by mtDNA cytochrome oxidase I sequencing. In the present study, 

we subsampled 75 of these colonies: 30 colonies whose worker had a genotype associated 

with T. immigrans (Qvalue >95% in Cordonnier et al., 2018), 15 whose worker had a 

genotype associated with T. caespitum (Qvalue >95% in Cordonnier et al., 2018), 15 

potential F1 hybrids (genotype associated between 40% and 60% to parental species in 

Cordonnier et al., 2018), and 15 potential backcrosses with T. immigrans (genotype 

associated between 60% and 80% to parental species in Cordonnier et al., 2018). These 

colonies were randomly subsampled in 6 out of the 19 spatial areas described in 

Cordonnier et al. (2018) corresponding to three latitudinally distinct spatial areas (Tab. 

1) covering the whole, 180 km latitudinal extent of the hybrid zone described in 

Cordonnier et al. (submitted to Heredity).  

 

 

Table 1. Correspondence between the nomenclature used in this study and the sampling 
zones described in Cordonnier et al. (2018); mean, minimal and maximal latitudes of the 
North (Tournus, Mâcon), Center (Villefranche-sur-Saône, Lyon) and South (Tournon-
sur-Rhône, Valence) areas. 

 
North Center South 

Cordonnier et al. (2018: fig 1) Sampling zones 5-6 Sampling zones 8-9 Sampling zones 12-13 

Mean latitude 46.445 45.834 45.011 

Latitude Range 46.280 - 46.605 45.610 - 46.010 44.910 - 45.096 

    

 

For fifteen randomly selected workers per colony, DNA was extracted from whole 

individuals, which were crushed and then mixed with 150 μL of Chelex® 100 and 10 μL 

of proteinase K (15 mg.mL-1) at room temperature; the solution was incubated at 55°C 

overnight (Casquet et al., 2012). For genotyping, 17 microsatellites developed for T. 

immigrans or T. tsushimae by Steiner et al. (2008b) were organized in three multiplex 

PCR mixes. All three mixes had a total volume of 10 μL with 1X MasterMix (kit type-it 
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microsatellite PCR Qiagen n°206246) and 2 μL DNA. Mix1 contained 0.08 μM of 

tspE53a primers, and 0.2 μM of tspE52b, tspE52d, tspE52k, ttsU55a and ttsU56d primers. 

Mix2 contained 0.15 μM of tspE51oR3 primers, 0.2 μM of tspE51a, tspE51b, tspE51d, 

ttsU58i and ttsU59j primers, and 0.3 μM of tspE51i primers. Mix 3 contained 0.08 μM of 

ttsU54e, 0.15 μM of tspE52a, and 0.2 μM of tspE53b and ttsU57l primers. Amplifications 

consisted in 5 min at 95°C, then 32 cycles (30 s at 95°C, 90 s at 60°C, 30 s at 72°C), and 

30 min at 60°C. All PCR products were analyzed with an ABI 3730xl sequencer (service 

provided by GENTYANE). Electropherograms were read and interpreted with 

Genemarker v.1.95 (SoftGenetics). One marker was discarded because it presented risks 

of misinterpretation at the reading stage. In addition, workers where alleles were not 

clearly legible for at least 12 markers were removed from the analysis, and colonies with 

less than 12 (pure T. immigrans or T. caespitum) or 14 (hybrids colonies) legible worker 

genotypes were discarded. Our final dataset included genotypes for 16 microsatellite 

markers (Tspe52d, Tspe52b, Tspe52k, Ttsu56d, Tspe53a, Ttsu55a, Ttsu59j, Tspe51i, 

Ttsu58i, Tspe51a, Tspe51o, Tspe51b, Tspe51d, Tspe52a, Tspe53b, Ttsu57l) for 28 putative 

T. immigrans colonies, 15 putative T. caespitum colonies, and 27 putative hybrid colonies 

(14 F1 and 13 backcrosses) with an average of 14.8 worker genotypes per colony, resulting 

in 1038 genotypes for 16 markers (basic statistics computed in GENALEX v.6; Peakall 

& Smouse, 2006; Tab. S1).  

 

Observed number of matings 

Based on the identified worker genotypes, we first “manually” inferred the 

genotypes of queens and their mates in each colony to minimize potential errors. At each 

locus two alleles shared by all the workers were assigned to the queen, while haploid 

fathers’ genotypes were determined by the alleles unassigned to the mother. This pattern 

was then iterated over the 16 markers until reaching a minimal number of sires per queen. 

This allowed an individual correction of all potential genotyping errors to avoid 

overestimating the number of potential sires. Although time-consuming, such an 

approach minimizes errors compared to classically used software (COLONY, Matesoft) for 

which data monitoring and analysis are automated, quite often without post-processes 

quality control. Here, scoring errors were checked and corrected one last time after 

identification of mothers and sires. Situations where more than one potential queen 
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genotypes could account for the data have not been found in any of the 70 colonies tested. 

For each colony the observed number of matings per queen was systematically recorded. 

Observed number of mating differences between species and zones were investigated by 

nonparametric Kruskal-Wallis tests coupled with Mann-Whitney-Wilcoxon tests for 

contrasts (including a simple Bonferroni correction). 

 

Bayesian admixture model  

The program NEWHYBRIDS (Anderson & Thompson, 2002) was run to identify 

recent hybrids (F1, backcrosses) from the whole genotypic data including all workers and 

inferred parental genotypes. The analysis was performed based on ten iterations carried 

out using Jeffreys's prior and setting the burn-in period to 20,000, with a MCMC length 

of 500,000 replicates. Following Kronauer et al. (2007), haploid male genotypes were 

entered as homozygote diploids to include inferred males in the analyses. Additionally, 

the Bayesian clustering algorithm implemented in the software STRUCTURE v. 2.3.1 

(Pritchard et al., 2000) was computed based on the admixture model with correlated allele 

frequencies, and with a number of clusters K = 2, running 10 iterations. Each run 

consisted in 500,000 replicates of the MCMC after a burn-in period of 500,000 replicates. 

Clustering results were analyzed using CLUMPAK (Kopelman et al., 2015) based on a 

Markov clustering algorithm which identifies sets of highly similar runs grouped together 

in modes and separates these distinct groups of runs to generate a consensus solution for 

each distinct mode. Based on the consensus solution of the majority mode (no minority 

mode was found in this analysis), we obtained 2 distinct Q-values for each individual 

corresponding to their membership coefficient for each cluster. 

 

Assignment of individuals  

Assignment of individuals was based on the four categories defined by 

NEWHYBRIDS (T. immigrans, T. caespitum, F1 and backcrossed hybrids), as this method 

has been demonstrated to better discriminate hybrids in our system (Cordonnier et al., 

submitted to Heredity). In case of incompatibility between worker offspring and parents’ 

identity (observed in 13 of the 70 colonies analyzed), we used Q-values obtained from 

STRUCTURE to better characterize these situations. 
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RESULTS 
 

The inferred genotypes of queens showed that all colonies were monogynous, as 

a single maternal diploid genotype was consistent with the observed worker genotypes in 

the 70 colonies investigated. The inferred genotypes of males revealed that polyandry 

occurred in both species, with an overall mean of 1.886 observed mates for the 70 colonies 

studied. NEWHYBRIDS allowed the identification of all 1038 analyzed workers, as well as 

the 70 females and 132 males inferred. In 13 colonies, worker offspring identities were 

incompatibles with parents’ identities and Q-values obtained by STRUCTURE were used 

to better understand these situations. These mismatches corresponded to: (1) an over-

detection of individuals belonging to parental species in situations where hybrid queens 

that were strongly backcrossed with T. immigrans mated with pure T. immigrans males 

(11/13 situations) or (2) an over-detection of F1 hybrids in situations where hybrid queens 

that were strongly backcrossed with T. immigrans mated with pure T. caespitum males 

(2/13 situations). Overall, four categories of colonies were identified: (i) 28 pure T. 

immigrans colonies containing only T. immigrans workers, queen and male(s), (ii) 15 

pure T. caespitum colonies containing only T. caespitum workers, queen and male(s), (iii) 

11 mixed colonies containing pure and hybrid workers but only pure parents (queen or 

males) and (iv) 16 backcrossed colonies containing hybrid workers and parents. The 

numbers of colonies in each category and each geographical sampling area are detailed 

in Table 2. 

 

 

Table 2. Number of colonies in each sampling area and colony categories: pure T. 
immigrans or T. caespitum colonies containing only workers, queen and male(s) of pure 
parental species, mixed colonies containing pure and hybrid workers but only pure 
parents, and backcrossed colonies containing hybrid workers and parents  
 

 North Center South 
T. immigrans colonies 9 10 9 
T. caespitum colonies 5 6 4 
Mixed colonies 4 3 4 
Backcrossed colonies 6 6 4 
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Among the 16 backcrossed colonies, five corresponded to an F1 female mated 

with pure males and eleven involved a backcrossed female mated with pure males. 

Remarkably, in all these backcrossed colonies, none of the 26 males involved were 

hybrids. 

 

The observed number of mating (Kobs; Jaffé, 2014) was significantly higher in T. 

caespitum (Kobs = 2.400 ± 0.1309) than in T. immigrans (Kobs = 1.679 ± 0.1156; Mann-

Whitney-Wilcoxon W = 328.5, p-value = 0.0008) (Fig. 1). Hybrid colonies had an 

intermediate observed number of mating (Kobs = 1.955 ± 0.0753) compared to parental 

species. Differences of observed number of mating between zones within each species 

suggested that polyandry possibly differed latitudinally between zones (T. immigrans: K-

W chi-squared = 5.65, df = 2, p-value = 0.059; T. caespitum: K-W chi-squared = 5.25, df 

= 2, p-value = 0.072) with a higher level of polyandry in the south compared to the north 

in T. immigrans (Mann-Whitney-Wilcoxon W = 16.5, p-value = 0.055) (Fig. 1).  

 

 
Figure 1. Observed number of mating (Kobs) in each pure species (T. caespitum and T. 
immigrans) and for each area (North, Center, South). Stars indicates a significant 
difference (p<0,001) between species assessed by Mann-Whitney-Wilcoxon test. Letters 
indicate significant differences (p<0,05) between areas assessed by Mann-Whitney-
Wilcoxon test with a simple Bonferroni correction. 
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In mixed colonies (i.e., colonies involving heterospecific mating), the 

simultaneous presence of both conspecific and heterospecific males was rare (three 

situations involving a T. caespitum queen, and one situation involving a T. immigrans 

queen). In the three situations where the T. caespitum queen mated with both T. caespitum 

and T. immigrans males, worker offspring were overwhelmingly sired by heterospecific 

males (Tab. 3), whereas in other colonies the paternity skew was suggestively lower, with 

an average contribution to the worker offspring of 70.6% for the most productive of two 

males, falling to 49.6% for three males. 
 

Table 3. Percent contribution of males to worker offspring for the three mixed colonies 
involving a T. caespitum queen and the simultaneous presence of both conspecific and 
heterospecific males 
 

Colony ID 
Male 1 
(conspecific) 

Male 2 
(conspecific) 

Male 1 
(heterospecific) 

Lyo29 20% 20% 60% 
Tsr32 6% - 94% 
Vil47 20% - 80% 

 

 

DISCUSSION 

Mating system  

By investigating the mating system of 28 pure colonies of T. immigrans, 15 pure 

colonies of T. caespitum and 27 hybrid colonies, we demonstrated that both T. immigrans 

and T. caespitum displayed a monogyne/polyandrous mating system, with a higher 

mating rate in T. caespitum. To our knowledge, our study is the first to describe polyandry 

in these two species. The occurrence of multiple mating has raised theoretical and 

experimental attention to issues related to sexual selection and sexual conflict, such as 

the mechanisms involved in sperm competition and cryptic female choice, as well as 

the costs and benefits that females may incur with multiple mating (Pizzari & Wedell, 

2013). In social Hymenoptera (ants, bees and wasps), the adaptive significance of 

polyandry is often explained by hypotheses suggesting that polyandry is advantageous to 

queens because the resultant increase in genetic variation within colonies leads to an 

increased colony performance (Keller & Reeve, 1994; but see Fjerdingstad et al., 2003 or 

Fournier et al., 2008). These hypotheses are also often put forward to explain the value 
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of hybrid offspring, as increased allelic variation and transfer of adaptively important 

genetic variation may increase the fitness of the introgressed lineage (Twyford & Ennos, 

2012; see below). Future measurements of colony performance in the species studied here 

(and their hybrids) as a function of their degree of polyandry should be considered, as 

such a multiple mating and hybridization system offers unique insight into important eco-

evolutionary mechanisms, such as sexual selection and sexual conflict or species 

interaction and niche partitioning. 

 

Latitudinal variation of mating frequency 

In this study, the level of polyandry seemed to increase at lower latitudes although 

data are too scarce to confirm a latitudinal pattern. Consistent with our observations, 

Corley & Fjerdingstad (2011) investigated two populations of Lasius niger in North 

Europe vs. two populations in South Europe and concluded that multiple mating by 

queens was far more frequent in the two southern populations than in the two populations 

from Northern Europe. These authors suggested that this pattern arose because multiple 

mating might increase fitness for queens and colonies in Southern European climates, 

whereas only exceptionally good colonies can survive in harsher northern environments, 

thus favoring single mating vs. multiple paternity which could reduce variance in colony 

performance. As far as the two Tetramorium species studied here are concerned, it should 

be interesting to extend the present study to a broader latitudinal range, and to investigate 

situations outside the hybrid zone, in which other mechanisms might control reproductive 

mechanisms within and between these species (Umphrey, 2006; see below). 

 

Hybrid females, but not males, produce offspring 

Our results clearly showed the reproductive capability of hybrid females, but no 

hybrid males were detected in the paternity of workers. Introgression into females but not 

into males is compatible with the extended Haldane’s rule for haplodiploids, which states 

that the haploid sex should more often be sterile or inviable (Koevoets & Beukeboom, 

2009). Nevertheless, to date, this pattern has been rarely documented in ants. The only 

example in the literature involved hybrids between the red wood ants Formica aquilonia 

and F. polyctena (Kulmuni et al., 2010). In this system, two genetic groups coexist in 

highly polygynous nests; the alleles of one genetic group are found in the diploid 



Chapter 4. INTERSPECIFIC HYBRIDIZATION AND INTROGRESSION 

 

 

 
184 

individuals (i.e., females) but not the haploid males of the other genetic group, leading to 

hybrid females (workers and queens) but no hybrid males (Kulmuni et al., 2010). 

Kulmuni & Pamilo (2014) proposed two hypotheses to explain this pattern: the selection 

and segregation hypotheses. On the one hand, the selection hypothesis implies a strong 

postzygotic selection against hybrid males, because recessive incompatibilities can be 

masked in diploid heterozygous females but not in haploid males. In that case, hybrid 

males die but females can survive. On the other hand, the segregation hypothesis states 

that hybridization has led to the formation of two independently segregating sets of 

alleles, one always transmitted from the queens to their sons (Y-type) and the other to 

their daughters (X-type) after fertilization by sperm carrying the paternal complement 

(Y), leading to hybrid females but only pure males. According to Lowry & Willis (2010), 

this second situation could contribute to hybrid incompatibilities and lead to reproductive 

isolation of hybrids. In this context, it should be relevant to test this hypothesis in the 

present system, e.g., by monitoring genotypes at various stages of development (very 

young embryos, sexual larvae and pupae, worker larvae and pupae, adult females, males 

and workers), as was done by Kulmuni & Pamilo (2014). 

 

Asymmetrical contributions to offspring of conspecific vs. heterospecific males  

A major feature of the present study is the discovery of the coexistence of 

hybridization and multiple mating, allowing the simultaneous production of both hybrid 

and nonhybrid offspring within the colony. Nevertheless, the production of F1 hybrid and 

nonhybrid offspring within the same colony was rare and did not allow conclusions to be 

drawn on the hypothesis of a random paternity allocation between species. Our study 

provided a preliminary assessment of the variation of offspring production in hybrid 

colonies and suggested asymmetrical contributions to offspring of conspecific vs. 

heterospecific males in colonies with a T. caespitum queen. The potential negative effects 

of interspecific hybridization (see Feldhaar et al., 2008 for specific examples) can be 

offset by advantages conferred by hybrid workers, particularly because hybrid workers 

are likely to have a greater ability to use marginal habitats (Umphrey 2006). In such 

situations, Umphrey (2006) concluded that interspecifically mated queens could for 

example nest in sites where intraspecific competition is low and reach a higher probability 

of reproductive success. In the Tetramorium system studied here, there are significant 
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differences in microhabitats and habitats between the two species since T. immigrans is 

predominantly present in urbanized habitats and micro-habitats (e.g., pavement) while T. 

caespitum occurs mainly in natural habitats and vegetated micro-habitats (Cordonnier et 

al., submitted to Ecology). The marginal habitat hypothesis, according to which the hybrid 

workers should mainly occur in the urbanized-environment colonies with T. caespitum 

queens, could therefore be tested. Lowe et al. (2015) suggested that spatial sorting, i.e., 

an evolutionary mechanism that allows gene frequencies to increase because of greater 

success through space rather than time, could partially explain the paradoxical spread of 

introgressive hybridization despite strong selection against hybrids. These authors 

concluded that because all the progeny of a hybrid will be hybrids and inherit genes from 

both parental taxa, admixture could increase even when most hybrid progeny do not 

survive. The coexistence of hybridization and multiple mating observed in the system 

described here could enhance these mechanisms and accelerate the spread of 

introgression.  

 

Sexual selection, natural selection and sexual conflict  

Although causality cannot be established directly from the patterns of paternity 

biases observed here, these patterns raise questions worthy of investigation, particularly 

with respect to the potential roles of post-copulatory sexual selection and sexual conflict 

in social evolution (Jaffé et al., 2012). As paternity skew across worker cohorts in the 

same colony seemed to occur, it would be worth checking whether this might simply 

indicate a difference in worker survival rate depending on the environment of the nest or 

reflect differential larval growth rather than temporary variable sperm use owing to 

incomplete sperm mixing (Boomsma 2013). As previously suggested by Boomsma 

(2013), it is tempting to speculate that this facultative multiple mating system evolved to 

allow females to correct suboptimal first inseminations, but considerable research effort 

will be required to unravel the interaction between sperm transfer and female sperm 

storage responses, which appears to be an ambitious goal as the species studied probably 

do not mate under laboratory conditions. A first step toward answering these questions 

could be to consider not only sterile worker offspring but also males and gynes. In ants, 

a fertilized egg can become a reproductive female or a sterile worker, because of different 

larval feeding regimes, seasonal effects, hormones pulses or even genetic determination 
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(e.g., Nonacs, 2006). Analyzing sexual offspring instead of the sterile offspring less prone 

to selective pressures would ensure further insights into the consequences of sexual 

selection and sexual conflict in insect societies (Jaffé et al., 2012). Another way to tackle 

these evolutionary questions could be to go beyond post-hatching natural selection stages 

by studying copulation frequencies (which in our case are very difficult to observe, as 

mating occurs during nuptial flights) or insemination frequency obtained after genotyping 

the sperm content of the queen's spermatheca, as suggested by Jaffé (2014). 

  

Hybrid detection and identification 

Finally, in the context of hybrid colonies identification, our results show that lack 

of genetic information on reproductive individuals leads to underestimate introgression 

processes, as all workers in a mixed colony are not hybrids and because in hybrids 

colonies, backcrossed workers having allelic frequencies close to F1 hybrids or 

individuals belonging to parental species are not properly detected. As a consequence, 

introgression may be much more pervasive than observed by Cordonnier et al. (2018, 

submitted to Heredity). 

 

 

CONCLUSION 

Together, our findings paint the picture of a complex and dynamic mating system 

in Tetramorium immigrans and T. caespitum. Numerous studies have already focused on 

hybridization, and even more on multiple mating, but so far, few if any have described a 

system combining both polyandry and interspecific hybridization, making it worth 

investigating for several reasons. One reason is that, as far as we know, the study of 

polyandry within a hybrid zone is totally unprecedented. It could also be an opportunity 

to investigate sexual selection processes in social Hymenoptera and an ideal system to 

test the numerous hypotheses about selective processes involved in the evolution of 

multiple mating. Finally, further enquiring into the hybrid Tetramorium situation should 

contribute to better understand interspecific hybridization mechanisms and their short- to 

long-term consequences on genetic and taxonomic diversity in a world facing human-

induced global changes. 
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SUPPORTING INFORMATION 

Table S1. Statistics of microsatellite markers computed using GENALEX (Peakall and Smouse, 
2006): Mean and SE per family of sample size, number of alleles and effective number of alleles. 
 
Peakall, R. O. D. and Smouse, P. E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic 7 
software for teaching and research. - Molecular Ecology Resources 6: 288-295. 

 
 

 

  

  Tspe52d Tspe52b Tspe52k Ttsu56d Tspe53a Ttsu55a Ttsu59j Tspe51i Ttsu58i Tspe51a Tspe51o Tspe51b Tspe51d Tspe52a Tspe53b Ttsu57
N Mean 14,786 14,743 14,786 14,800 13,586 14,743 14,614 14,771 14,757 14,600 14,729 13,729 14,814 14,714 14,714 14,557
 SE 0,084 0,097 0,088 0,085 0,101 0,088 0,138 0,079 0,085 0,101 0,136 0,089 0,087 0,096 0,087 0,125 

Na Mean 3,357 3,557 3,043 3,100 2,457 3,386 3,414 3,557 3,371 3,086 3,314 3,343 2,886 3,086 3,157 3,014 
 SE 0,093 0,101 0,103 0,122 0,128 0,110 0,103 0,107 0,096 0,103 0,101 0,104 0,111 0,090 0,090 0,103 

Ne Mean 2,836 3,024 2,557 2,611 2,116 2,840 2,912 3,014 2,917 2,601 2,896 2,827 2,408 2,633 2,705 2,538 
 SE 0,084 0,092 0,101 0,107 0,109 0,103 0,098 0,089 0,101 0,096 0,097 0,091 0,094 0,085 0,085 0,099 
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« The first law of ecology is that everything is 
related to everything else.» 

 

Barry Commoner, The Closing Circle, 1971 
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5.1- SYNTHESIS OF THE RESULTS 
 
Chapter 1 briefly reviewed the consequences of climate changes, urbanization, and 

biological invasions; I further described how these global changes promote genetic 
exchanges between species. I discussed the long-term evolutionary consequences of 
hybridization and introgression in a broad context and I showed that ants, especially 
Tetramorium species, and the Rhône-Saône valley are ideal systems for studying these 
problematics. 

 
In Chapter 2, I investigated range limits of species over both urban and climatic 

gradients. I sampled 1690 Tetramorium colonies and used a two-step integrative approach 
combining nuclear and mitochondrial DNA to identify five Tetramorium species in the 
Rhône-Saône valley: T. forte, T. moravicum, T. semilaeve, T. immigrans, and T. caespitum. 
I showed that climate has a fundamental role as a factor limiting the species ranges at a 
well-known biogeographical limit between Continental and Mediterranean climates. I also 
highlighted the importance of considering several spatial scales simultaneously in order to 
study the impact of urbanization on species distribution. Results suggested a highly 
contrasted responses to urbanization of T. immigrans and T. caespitum which may indicate 
niche partitioning processes driven by urbanization. 

 
Chapter 3 focused on Tetramorium immigrans to investigate the combined 

influence of climate and urbanization on its distribution along the Rhône-Saône valley. I 
showed that T. immigrans was probably introduced here from external sources, and that 
these introductions were followed by colonization favored by human activities in the 
northernmost urban areas. I discussed the fact T. immigrans is likely not native to South-
eastern France, at least to the northernmost urban areas. I concluded that despite that the 
effect of climate-urbanization interaction on species distribution is mostly overlooked in 
the literature, many taxa may conform to the pattern described here for T. immigrans, 
making the combined study of global changes a necessary challenge for future studies. 

 
Finally, in Chapter 4 I showed that hybridization between Tetramorium immigrans 

and T. caespitum can lead to fertile offspring, with hybrids located at latitudes where 
parental species are sympatric. Differentiated cuticular hydrocarbon profiles and 
heightened interspecific aggression revealed clear species recognition cues. The mating 
system of Tetramorium immigrans, T. caespitum and hybrid colonies was monogyne and 
polyandrous. Hybrid males seemed to be sterile or inviable. I discussed the fact that such 
study of polyandry within a hybrid zone was unprecedented and open the opportunity to 
investigate the selective processes involved in the evolution of multiple mating. 
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In the following sections, I will start by identifying the filters crossed by species 
allowing them to hybridize with each other (Chapter 5.2). Then, I will discuss some 
hypotheses about the future of the Tetramorium immigrans x caespitum system (Chapter 
5.3). In the third part (Chapter 5.4), I will stress the importance of considering the 
interrelationships between climate, urbanization, invasions and hybridization. Finally, a 
fourth part will be devoted to the conclusion and presentation of different research 
perspectives (Chapter 5.5). 

 
5.2- HOW DOES HYBRIDIZATION BETWEEN TETRAMORIUM IMMIGRANS 
AND T. CAESPITUM OCCUR? 

5.2.1- From species meeting to hybrid offspring 

Hybridization between two sexually reproductive species can only occur after a 
series of filters have been passed through (Fig. 1). First, the involved species must live in 
sympatry. Hybridization therefore often occurs as a consequence of secondary contact 
between species, i.e., a geographic overlap between two genetically distinct lineages that 
derived from a common ancestor and underwent a phase of allopatric isolation. For 
instance, biological introductions concomitant with urbanization (Cristescu 2015) can 
result in contact zones between species capable of genetic exchanges because of a lack of 
pre-zygotic reproductive barriers (i.e. morphological, behavioral, geographical or 
ecological), as reviewed by Crispo et al. (2011) in numerous taxa. Tetramorium 
immigrans and T. caespitum live in overlapping areas in the Sâone-Rhône valley (Papers 
1 & 2) and the probably recent establishment of T. immigrans in the northernmost areas 
(Paper 3) could have led to secondary contact with T. caespitum. After their meeting, 
numerous barriers to hybridization may still remain before mating, between mating and 
fertilization (prezygotic barriers), or after fertilization (postzygotic barriers; Fig. 1; 
Campbell et al. 1999; Coyne & Orr 2004). Habitat isolation, i.e. when species occupy 
different habitats within the same geographical area, could partially prevent hybridization 
between T. immigrans and T. caespitum according to the results of Paper 2. Massive 
nuptial flights however, might overcome this limitation as mating would take place at 
significant distances from the colonies. 

Seasonal or temporal isolation can occur when copulation takes place at different 
times of the year. Wagner et al. (2017) indicated that winged reproductive of T. immigrans 
can be found in nests between March, 17 and September, 29, whereas reproductive alates 
of T. caespitum were in nests between May, 28 and August, 19, which corroborate the 
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hypothesis of a phenological overlap compatible with interspecific mating. Sexual or 
behavioral isolation can then occur when sexual attraction between species is low. Species 
discrimination plays here a significant role as mating with heterospecific partners could 
result from an absence of discrimination of the partner’s species. Cuticular hydrocarbons 
are important in mate choice in many insects, even playing a key role in reproductive 
isolation, e.g. in the hybridizing field cricket species Gryllus campestris and G. bimaculatus 
(Tyler et al. 2015). In Paper 5, I evidenced differentiated cuticular hydrocarbon profiles 
and heightened interspecific aggression in Tetramorium immigrans, T. caespitum and 
hybrid workers, suggesting that species recognition cues are both present and perceived. 
This situation could be different for males and females at mating, for instance because 
inside the mating swarms, increased exchanges of cuticular hydrocarbons (CHCs) with 
other reproductives that come into physical contact could homogenize their profiles and 
reduce their ability to use species-specific cues (Herrmann 2016). Therefore, it could be 
relevant to further investigate the recognition cues in reproductives, although difficult as 
the identification of these taxa is based on genetic methods that are wholly or partially 
destructive of individuals which cannot be further used for CHC extraction or behavioral 
assays. Mechanical isolation arises when anatomical incompatibilities between genitalia 
prevents fertilization. In ants, hybridization should be possible provided uniformity of the 
genital morphology within the same sex between hybridizing taxa (Feldhaar et al. 2008). 
Male genitalia in T. immigrans and T. caespitum are nearly identical (Schlick-Steiner et al. 
2006; Wagner et al. 2017), suggesting an absence of anatomical barriers to mating between 
these species (Fig. 1). Gametic isolation can occur if the gametes of a species are unfit to 
survive in the genital tracts of another species. As far as I know, no study has investigated 
such mechanisms in the Tetramorium caepitum complex. Finally, three successive 
postzygotic barriers can prevent hybridization between species (Fig. 1): (i) reduced viability 
of hybrids, at egg, larval or adult stage, (ii) sterility of hybrids, when F1 hybrids of one sex, 
or both, are unable to produce functional gametes, and (iii) hybrids breakdown, when 
viability or fertility of hybrids of second generation (F2) or backcrosses is reduced. 
Chapter 4 especially focused on postzygotic barriers in the T. immigrans – T. caespitum 
hybridization complex, and I confirmed that hybrid zygotes reach maturity (Paper 4; see 
also Wagner et al. 2017), and that hybrids can reproduce, as I detected introgression (Paper 
4) and hybrid offspring produced by hybrid queens (Paper 6). However, hybrid males did 
not seem to be involved in the production of hybrid offspring, although the kind of 
postzygotic barrier involved cannot be deduced from my results (Fig. 1). 
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Figure 1. Left panel: Reproductive barriers to gene flow between two different species 
(orange) and how to overcome them (green). Prezygotic barriers occur before mating, 
while postzygotic do after (Adapted from Campbell et al. 1999 and Coyne & Orr 2004). 
Right panel: Synthesis of results from previous and current studies investigating these 
barriers in the Tetramorium immigrans (red) and T. caespitum (blue) hybridization 
complex. Workers are unwinged individuals.  
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5.2.2- When mating system and mating behavior favor the spread of hybridization 

Several behavioral characters of mating system probably facilitate interspecific 

mating between T. immigrans and T. caespitum hence promoting hybridization. 

Polyandry, i.e., when females mate with multiple males, is a striking example of such as 

character, as such a mating system could facilitate hybridization. In Paper 3, I 

investigated the hybridization of T. immigrans and T. caespitum and evidenced the 

genetic introgression between these species. In Paper 6 I showed that both T. immigrans 

and T. caespitum were polyandrous. In such a hybridization complex, contrary to 

monandrous species where each female mates with either a con- or a heterospecific male 

and thus produces either conspecific offspring only or hybrids only, polyandry may lead 

females to mate with both con- and heterospecific males and to produce varying 

proportions of hybrid offspring. For instance, in two theoretical situations with an initial 

population mixing (i) 50% of each parental species or (ii) 25% of one species and 75% 

of the other, the random mating of females with one, two or three potential males 

systematically increased probabilities of producing hybrid offspring (Fig. 2). The role of 

polyandry in producing hybrid zones has been rarely studied in the literature, but 

following previous theoretical framework, polyandry under random mating should factor 

positively toward the establishment of hybrid zones. According to Arnqvist et al. (2000), 

for any given degree of hybrid unviability, hybridization in monandrous systems results 

in a lower variance in female fitness and a lower opportunity for selection among females 

against hybridization under polyandry. Hartman et al. (2012) also showed that extra-pair 

copulation, which is a form of polyandry, could override assortative mating preferences 

and facilitate hybridization and genetic introgression.  
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Figure 2. Statistical view of the role of polyandry showing that it should spread 
hybridization faster than monandry. I hypothesize here that females mate randomly with 
males of both species (red and blue) according to their proportions in the population (left 
panel). Mates per female therefore correspond to a random sampling of one or two males 
without replacement (central panel). More mates, whatever the female species (red or 
blue), systematically leads to an increase of the probability of producing hybrid offspring 
(right panel).  

 

However, other mechanisms can interfere with the mating system, such as non-

random mating resulting from mate choice, i.e., selection of partner dependent on the 

attractiveness of an individual's phenotypic or genotypic traits. Although mate choice is 

predicted to be lower in more polyandrous species, which would therefore be more prone 

to accept a heterospecific mate (Veen et al. 2011), the strength of preference for 

conspecific or heterospecific mating could mitigate the spread of hybridization due to 

multiple mating. Indeed, sexual conflict in mating and intersexual differences in the 

strength of assortative mating preferences strongly affects the ability of an alternative 

mating tactic to influence introgression (Hartman et al. 2012; Fig. 3). Studies on mating 
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behavior and hybridization often draw a dichotomy between competitive males mating 

indiscriminately and choosy females limiting heterospecific mating (Lipshutz 2017). 

However, Lipshutz considers that this dichotomy is oversimplified in several ways. For 

instance, if females of two species select large males for mating, and males of one species 

are bigger, females of one species should prefer mating with conspecific males because 

heterospecific males would be smaller, but females of the other species should favor 

heterospecific males as these males are bigger than males of its own species. Lipshutz 

(2017) concluded that heterospecific preference of females occurs when heterospecific 

males resemble high-quality conspecifics or when ancestral preferences have not 

diverged, as in female orange-backed fairy wrens Malurus melanocephalus 

melanocephalus that prefer red-backed males resembling another subspecies Malurus 

melanocephalus cruentatus (Baldassarre & Webster 2013) and in female tungara frogs 

(Physalaemus pustulosus species group) that prefer call features of heterospecific males 

(Ryan & Rand 1993). 

 

 

Figure 3. The mean proportion of hybrids in a population over time depends on the degree 
of female control over copulation and sperm competition favoring an extra-pair mate 
(female have complete choice (100%), or 75%, 50%, 25%, or no choice (0%; baseline 
value); from Hartman et al. 2012: fig. 4).  
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In the hybrid system of T. immigrans x caespitum, female mate preferences could 

therefore modify the outcome of both hybrids and parental species. Regrettably, in Paper 

6, the production of F1 hybrid and nonhybrid offspring within the same colony was rare 

and did not allow conclusions about mate choice during nuptial flights. Another way to 

tackle these evolutionary questions could be to go beyond post-hatching natural selection 

stages by studying copulation frequencies (which in our case are very difficult to observe, 

as mating occurs during nuptial flights) or insemination frequency obtained after 

genotyping the sperm content of the queen's spermatheca, as suggested by Jaffé (2014).  

 

5.3- THE FUTURE OF TETRAMORIUM SPECIES AND HYBRIDS IN FRANCE 

5.3.1- Tetramorium immigrans, from a bottleneck to an increasingly fast spread? 

Tetramorium immigrans is an invasive species in North America (Steiner et al. 

2008) where it was introduced by the end of the 18th century, subsequently spreading to 

urban ecosystems of the northern USA Atlantic coast (King & Green 1995) as well as 

further inland. Steiner et al. (2008) showed that T. immigrans could become a global 

threat and spread away from its introduced range. According to its climatic niche as 

described in Paper 1, global warming could probably enhance this spread in the future 

decades. At a finer geographical scale, Steiner et al. (2008) also suggested that the spread 

of T. immigrans could be promoted by factors such as urbanization. Accordingly, we 

found that this species was clearly associated with urbanized areas in our study (Paper 

2). Most urban specialist species are introduced by human-mediated activities, while only 

few native species seem suited to urban environments (McKinney 2006), pointing 

towards an anthropogenic introduction of T. immigrans in urban areas.  

A study of 80 invasive species has shown that more than half of these species 

display a loss of allelic diversity greater than 20% (Dlugosh & Parker 2008). This is the 

case, for example, for many invasive insects, e.g., the Argentine ant Linepithema humile 

(Tsutsui et al. 2000), the bumblebee Bombus terrestris (Schmid-Hempel et al. 2007), and 

the Guatemalan potato tuber moth Tecia solanivora (Puillandre et al. 2008). Lindholm et 

al. (2005) also showed a founder effect linked to a recent bottleneck in introduced 

populations of guppies Poecilia reticulata by comparing the genetic diversity at nine 

microsatellite and one mitochondrial loci. The authors pointed out that genetic diversity 
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was severely reduced in introduced compared to native populations. This reduction in 

genetic diversity resulting from a founder effect is likely to diminish the adaptability of 

exotic populations in a new environment. Invasive species therefore have to adapt to a 

new environment despite a generally low initial genetic diversity (Frankham et al. 2005). 

Recent studies have attempted to explain this paradox by measuring genetic diversity and 

testing the presence of genetic bottlenecks in introduced populations (e.g., Fonseca et al. 

2000; Tsutsui et al. 2000; Zeisset & Beebee 2003; Rasner et al. 2004; Puillandre et al. 

2008). The results show that even though many invasive species display a reduction in 

genetic diversity and signs of genetic bottlenecks (Puillandre et al. 2008), this decline in 

diversity is not unfavorable for the establishment and proliferation of the species, 

probably because of rapid population expansion after introduction (Cabe 1998; Zeisset & 

Beebee 2003). Indeed, if the rate of population growth is high, relatively high levels of 

heterozygosity can be maintained, even if the population has suffered a bottleneck, 

especially if the bottleneck has not been too marked and several individuals have been 

introduced (Nei et al. 1975). An increase in invasive success is also possible following a 

bottleneck. Facon et al. (2011) demonstrated that bottlenecks have purged populations of 

Asian ladybug Harmonia axyridis of deleterious alleles responsible for inbreeding 

depression and thus increased the selective value of invasive individuals. Introduced 

populations of Argentine Ant Linepithema humile have undergone a strong genetic 

bottleneck responsible for a very reduced genetic variability (60% decrease in the 

expected heterozygosity compared to the area of origin; Tsutsui et al. 2000), and a 

probable lack of variation at the loci responsible for inter-colony recognition, leading to 

the formation of a very large "supercolony" (Suarez et al. 1999; Tsutsui et al. 2000; 

Tsutsui & Suarez 2003). The loss of genetic diversity related to the introduction of a 

limited number of individuals therefore still allowed a successful establishment. In Paper 

3, I confirmed multiple anthropic introductions of T. immigrans, and I showed that the 

species could have been transported from one city to another, in the same way as several 

house-dwelling arthropods (e.g., house cricket or cockroaches) transported all over the 

world by ‘‘house-to-house’’ jump dispersal as humans move (McKinney 2006). 

Differences in diversity and distribution between T. immigrans and T. caespitum seemed 

to confirm that T. caespitum has been present for a long time in the study area, while T. 

immigrans is closely associated with urbanization and underwent founder effects 
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resulting from introduction. The alternative hypothesis of post-glacial recolonization 

from smaller or more distant glacial refugia for T. immigrans would generate similar 

diversity patterns but would explain neither genetic structure nor the strong urban 

preferences of T. immigrans. Gathering more distribution and genetic data on T. 

immigrans should improve the understanding and interpretation of the observed genetic 

patterns. Accurate data on the entire range of the species, and more particularly in eastern 

Europe, will be needed to clarify the status of this species and to describe more precisely 

the source location of this species in its native range, especially regarding the genetic 

diversity pattern described above. 

Wheeler (1927) was the first to discuss the occurrence of pavement ants in North 

America, speculating that they came over during the colonial era (1748). However, the 

species had not spread across the United States from its introduction to Wheeler’s study, 

when compared to the large spatial range known today, pointing toward a much slower 

spread rate at the first stage of invasion. Such lags between  growth and spread of 

populations have been widely documented in the literature, resulting from early dynamics 

in the invasion process, when population sizes and area occupied are small (Crooks 2005). 

According to this author, the exponential growth of incipient populations undoubtedly 

accounts for many observed lags, combined with the fact that the area occupied is a 

squared function of time if populations are introduced into a small area and subsequently 

spread at a constant rate in all directions. A variety of supplementary mechanisms giving 

rise to slow initial growth of invasive populations have been proposed, such as the 

difficulty in finding mates when there is undercrowding (mate limitation; Veit & Lewis 

1996) and increased ability to suppress natives at high invader densities (Cappuccino 

2004). According to the results of Paper 3 and Paper 6, these mechanisms could have 

play an important role in the first stages after the introduction of T. immigrans in urban 

areas of South-Eastern France. It is therefore possible that the species has endured a slow 

spread in the Rhône-Saône valley. In such situation, further spread likely will be faster 

and spatially wider in the coming decades, reinforced by “jump-dispersal” phenomena 

which can establish foci of invasion well ahead of the expanding front and thus rapidly 

increase invader range (Johnson & Carlton 1996; Johnson & Padilla 1996), as well as by 

the combined effects of urban sprawl promoting its establishment and climate warming 

favoring its propagation. 
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5.3.2- Is Tetramorium immigrans an urban exploiter in competitive interaction with 

T. caespitum? 

Although my research largely focuses on Tetramorium immigrans, many issues 

regarding its interspecific interactions with T. caespitum are also of major interest. 

Together, Papers 1, 2 and 3 depict T. immigrans as an efficient urban exploiter capable 

of colonizing cities, probably at the expense of T. caespitum. Indeed, the presence of T. 

immigrans seems to lead to an exclusion of T. caespitum, the latter being present in cities 

only in the absence of T. immigrans (e.g. in Dijon or Langres; Papers 1 & 2) suggesting 

interspecific competition. 

When two species share the same resources (e.g., food, light, space, breeding site), 

they can interact through either exploitative or interference competition. Exploitative 

competition occurs where a species diminishes the availability of a limiting resource for 

another species by depleting it (Park 1954). Interference competition occurs where a 

species inhibits the accessibility to a resource for another species (Schoener 1983). 

Ultimately, such competition processes are considered one of the strongest drivers of 

community structure and functioning (Case & Gilpin 1974; Tilman 1982; Begon et al. 

1996), even if they can be difficult to detect and quantify in natural ecosystems (Schoener 

1983). In the case of T. immigrans and T. caespitum, niche partitioning processes driven 

by urbanization (Paper 2) could be due to interspecific competition. The observed pattern 

is similar to the situation described in North America, where T. immigrans is known to be 

invasive since the early nineteenth century and where it has been described as an urban 

specialist (King & Green 1995). This observed pattern could mainly result from two non-

mutually exclusive situations: 

- In urban areas, T. immigrans and T. caespitum could favor the same habitats, the same 

diet or the same nesting resources, leading to an exploitative competition underlying the 

observed niche partitioning displacing T. caespitum out of the urban environments.  
 

- In urban areas, resources could be sufficient for the persistence of both T. immigrans 

and T. caespitum but the species compete for their accessibility, inducing aggressive 

behaviour between them and leading to interference competition, therefore displacing 

T. caespitum out of the urban environments.  
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Due to the lack of previous ecological studies in the species of the T. caespitum 

complex, there is little evidence to determine which situation(s) are at the origin of the 

observed pattern. Previous studies focusing on pavement ants showed that colonies are 

well known for their ant wars involving thousands of ants fighting for establishing colony 

boundaries (Hoover et al. 2016; Plowes 2008), therefore suggesting that interference 

competition is also likely to occur between heterospecifics. Following Shochat et al.’s 

(2006) framework, if competition happens, the competitive exclusion of the native 

species T. caespitum by the invasive species T. immigrans in urban areas could be due to 

specific traits of T. immigrans compared to T. caespitum, which would make it a better 

colonizer of urban areas, able to increase in abundance (i.e., an “urban exploiter”; Fig. 4). 

What are the ecological factors that have made this species such a successful urban 

invader? What are the characteristics that allow it to cross the filters of invasion stage and 

to spread over the landscape? Concomitantly to demographical and genetic factors, 

ecological traits of T. immigrans have probably determined its invasive success. 

 

Figure 4: Schematic representation of pathways whereby human activities lead to 
competitive exclusion of the native species Tetramorium caespitum by T. immigrans 
passing through the increased abundance of invasive urban exploiter (adapted from 
Shochat et al. 2006). Grey boxes correspond to possible mechanisms underlying these 
patterns that remain to be further investigated.   
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For example, ant species in urban areas often have specific nesting habitats or food 

resources and survive despite increasing soil temperature and decreasing soil moisture 

(Philpott et al. 2010). They also have efficient dispersal abilities allowing founding 

queens to reach urban centers (Pacheco & Vasconcelos 2007). As a good urban exploiter, 

T. immigrans is therefore likely more generalist and opportunistic than T. caespitum 

(Philpott et al. 2010). In North America, T. immigrans was shown to be the prime 

consumer and remover of three commonly dropped food items (potato chips, cookies and 

hot-dogs) because of its abundance, activity levels, and dietary preferences (Youngsteadt 

et al. 2015). The results of Penick et al. (2015) on the abilities of T. immigrans to change 

its diet across urban habitats to shift to human foods also seem to corroborate this 

hypothesis. If the same pattern occurred in the Rhône-Saône valley, exploitative 

competition for resources between T. immigrans and T. caespitum would ensue and favor 

T. immigrans as a better forager. Tetramorium immigrans could also survive longer when 

suffering from food fasting, allowing it to have higher fitness than T. caepistum in urban 

areas where food might come in unpredictable pulses. Regarding nest habits, Paper 2 

concluded to the ability of T. immigrans to exploit anthropogenic resources for nesting. 

At the microhabitat scale, pavements turn nesting areas into warmer habitats than areas 

with sole vegetation cover, which could give T. immigrans an advantage provided such 

warmer temperatures actually provide a wider annual time-window than species 

inhabiting vegetated microhabitats such as T. caespitum. Urbanization indeed results in 

organisms exhibiting advanced phenology (Helm et al. 2013). Wagner et al. (2017) 

showed that winged reproductive of T. immigrans were produced in a wider period, which 

corroborate the hypothesis of a larger phenological niche for T. immigrans, in accordance 

with the pathways of Shochat et al. (2006; Fig. 4). Contrary to T. immigrans, T. caespitum 

builds soil mounds higher than 10 cm (Wagner et al. 2017), probably intercepting 

incident solar radiation, therefore maintaining ideal thermal conditions in the nest 

(Kasimova et al. 2014). The anthropized habitats of T. immigrans may allow this species 

to overcome the construction of such structures by nesting in microhabitats generating 

sufficient heat. Biological impacts of artificial nighttime lighting could also be involved 

in the niche partitioning of T. immigrans and T. caespitum as they impact individual 

physiology and behavior, species abundance and distribution, ecological interactions, the 

composition of communities, and the functioning of ecosystems (Gaston et al. 2017). For 
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instance, artificial nighttime lighting has been shown to affect foraging in extending the 

foraging times of some otherwise diurnal animal species into the nighttime, or in changing 

the ways in which species forage.  

Further investigations of species-level traits promoting T. immigrans in urban 

habitats should corroborate the hypothesis that this species is an urban exploiter or 

synanthropic species (McKinney 2006; Forman 2014). Other factors such as response to 

artificial light or to temperature variability, or differences in nest habits or in reproductive 

fitness could bring new lights on the drivers of their habitat preferences and to quantify 

the role of interference versus exploitative competition in their setting up.  

 

5.3.3- The future of hybrid zones is difficult to predict but crucial to monitor 

Hybridization between species is a major issue in evolutionary and conservation 

biology. Interspecific mating can reinforce pre-existing reproductive barriers 

(Dobzhansky 1937; Servedio & Noor 2003; Ortiz-Barrientos et al. 2009), resulting in 

novel gene combinations and new hybrid species (Anderson & Stebbins 1954; Arnold 

2004; Seehausen 2004; Hedrick 2013; Brelsford et al. 2011; Hermansen et al. 2011; 

Abbott et al. 2013), or threatening biodiversity via the assimilation of rare species within 

introduced populations (Laikre et al. 2010) or via ‘reverse speciation’ of previously 

distinct species when ecological conditions change to favor the formation and viability of 

hybrids (Taylor et al. 2006; Seehausen et al. 2008). As depicted in Chapter 1, the 

outcomes of hybridization can thus span from complete species isolation to complete 

admixture, mainly depending on hybrids’ fitness compared to parental taxa in the 

environmental context in which hybridization occurs. The complexity of the patterns 

generated by hybridization in ants makes it difficult to predict the future of hybrid zone. 

Nonacs (2006) showed for example that hybrid workers may allow colonies to survive 

and prosper in microhabitats that are hostile to pure species' worker phenotypes, or make 

colonies competitively superior to the parental species. On a broader context, the review 

of Harrison and Larson (2014) clearly illustrates how extremely complex the 

consequences of hybridization are, even more so in the case of introgression. For instance, 

in case of adaptative introgression, Harrison and Larson (2014) argue that it is possible 

that adaptive introgression of species A traits into species B might lead to the splitting of 

B into B and B′, that is, the introgression of traits from A may render some individuals of 
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B different enough from others that they now belong to two distinct species, as illustrated 

for Heliconius butterflies (Pardo-Diaz et al. 2012). Consequently, it would be illusory to 

describe the future of the hybrid zone between T.immigrans and T. caespitum based only 

on the current records of hybridization processes between these two taxa. However, some 

first clues could give a first overview of the hybrid zone structure and functionning. 

Our results suggest relatively weak reproductive isolation between T.immigrans 

and T. caespitum (Paper 4). Due to the intermediate location of the hybrid zone between 

mostly urbanized habitats and more natural environments (Papers 2 and 4), hybrids 

could experience ecological conditions different from parental species, especially in the 

agricultural belt matching the transition between the dense urban areas and semi-natural 

habitats comprising woodlands and meadows. These agricultural landscapes are 

characterized by ecological specificities including fragmentation of remaining natural 

habitat or application of agrochemicals (Tscharntke et al. 2005). It is therefore possible 

that specific hybrid genotypes or phenotypes have experienced relatively strong selection 

in this hybrid zone. Such a distribution across landscapes could be consistent with the 

dispersal-independent model of bounded hybrid superiority within narrow ecotones 

proposed by Moore (1977) and suggested for the Great Plains hybrid zone between Red- 

and Yellow-shafted flickers (Moore & Buchanan 1985; Moore & Koenig 1986). 

Considering agricultural landscapes in the urban gradient and thoroughly evaluating the 

characteristics of the ecological niches of hybrids should provide key elements about the 

outcome of the hybrid zone and the possibility of a specialization for agricultural habitats. 

An approach based on population densities evaluation could also bring new insight in the 

understanding of this hybrid zone dynamics. Indeed, predictions from tension zone 

models (see Chapter 1 for details) from well-studied hybrid zones (e.g., Barton 1979; 

Barton & Hewitt 1985; Hewitt 1989; Ruegg 2008) suggest that the center of the hybrid 

zone should correspond to an area of low population density for pure species. 

Different approaches can thus be used to provide answers or to exclude some 

hypotheses. However, observation of hybrid zones over multiple years and spatial 

replicates is the most reliable method for detecting their dynamics. Buggs (2007) showed 

that molecular markers sometimes shed more highlight on the movement of the hybrid 

zone through comparative studies in space, or locally at different scales; nevertheless, 

only repeated sampling over time and use of historical evidence, as well as manipulative 

experiments on the processes acting in the hybrid zone can resolve dynamics precisely.  
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5.4- WHY THE INTERRELATIONSHIPS BETWEEN CLIMATE, URBANIZATION, 

INVASIONS AND HYBRIDIZATION SHOULD ALWAYS CONSIDERED 

5.4.1- Global changes impacts on species ranges: a real bag of bones 

As mentioned in Chapter 1, current climate changes promote latitudinal or 

altitudinal shifts in distributions of species of a diverse range of taxa (e.g., Hughes 2000; 

Walther et al. 2002; Parmesan & Yohe 2003; Hickling et al. 2006; Pearce-Higgins et al. 

2014; Battisti et al. 2005; Chen et al. 2011; Lenoir & Svenning 2015; Lawing et al. 2011). 

Urbanization also modifies species distribution, because some species are not able to 

survive in urban ecosystems whereas others – especially the more generalist ones – 

dominate highly urbanized environments, leading to completely modified urban 

communities and ecosystems (e.g., Marzluff 2001; McKinney 2002, 2006 ; Kark et al. 

2007 ; Pacheco & Vasconcelos 2007; Sanford et al. 2009; Philpott et al. 2010; Menke et 

al. 2011; Buczkowski & Richmond 2012; Müller et al. 2013). The results obtained in 

Chapter 2 perfectly fit these patterns, as the distributions of all species strongly depended 

on either climate or urbanization, or both.  

Nevertheless, the situation is even more complex, because the factors associated 

with global changes operate at different scales (e.g., the case of impervious surfaces in 

Paper 2). Moreover, in Chapter 3 (Paper 3) I show that these factors interact with each 

other, which suggests that species distribution patterns are the result of complex and 

multi-scale interactions. 

This notion of interaction is rarely considered in the literature. Indeed, because 

climate change, land-use patterns and invasive alien species are likely to occur 

simultaneously, we can expect that they have synergistic effects on biodiversity (Bellard 

et al. 2015). Newbold (2018) made the first global predictions of the separate and 

combined (additive) effects of future climate and land-use change on local vertebrate 

biodiversity, and Leclerc et al. (2018) highlighted specific associations of threats among 

eleven global changes such as climate changes, pollution, urbanization, cultivation, 

biological invasions or wildlife exploitation at different scales, showing that the analysis 

of each threat in isolation might be inadequate. To my knowledge, interactive effects 

between these global threats have never been investigated to date. However, a large 
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number of clues of such potential interactions should have given us a hint and motivated 

deeper investigations, as previously suggested by Bellard et al. (2015). For instance, cities 

are often warmer compared with nearby rural habitats, with differences in the warming 

rate from nighttime to peak daytime temperatures, as well as spatial variations of this 

warming rate, being often faster in urban areas (Adams & Smith 2014). The impact of 

urbanization on climate is locally comparable to the ongoing global climate warming, 

suggesting that urbanization could strongly enhance climate change at local scales 

(Argüeso et al. 2014). My findings therefore highlight interaction effects of urbanization 

and climate changes. 

This complexity, involving scaling effects and interaction effects, emerges even 

though only two global changes were partially investigated in this thesis. For instance, 

the impacts of pollutions have not been included in the urbanization study. The 

intensification of the extreme events, which is a strong component of current climate 

changes, have not been considered here. For example, Dale et al. (2001) considered that 

the rapid response of fire regimes to changes in climate can potentially overshadow the 

direct effects of climate changes on species distribution and migration. Again, these other 

factors probably act and interact with other ones at different spatial scales. And what 

about other global changes such as agriculture or deforestation, composed themselves of 

a multitude of factors? Clearly, a simple causality study involving a partially described 

global change on the distribution of a species cannot lead to a convincing understanding 

of the processes underlying species distributions. Further studies about the impacts of 

global changes should thus use more inclusive approaches combining several factors, 

scales and global changes. 

 

5.4.2- The role of global changes on biological invasions 

As shown in Chapter 1, global changes can increase the risks of biological 

invasions (Walther et al. 2009; Bradley et al. 2012). For instance, climate change can 

exacerbate biological invasions (Dukes & Mooney 1999; Sala et al. 2000; Hellmann et 

al. 2008) because the distribution of many invasive species is currently restricted by 

thermal barriers and climate change might enable them to invade higher latitudes. For 

example, in France, most of the invasive ant species investigated by Bertelsmeier and 
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Courchamp (2014) were predicted to increase their potential range in response to climate 

change. Extreme climatic events, such as intense heat waves, hurricanes, floods, and 

droughts, may facilitate biological invasions through increased movements of non-native 

species and decreased biotic resistance of native communities to invader establishment 

(Diez et al. 2009). Urbanization can also induce the introduction of non-native species 

(Marshall & Shortle 2005), leading numerous studies to show a dominance of species 

introduced by humans in cities (Marzluff 2001; McKinney 2006; Heterick et al. 2013; 

Vonshak & Gordon 2015; Cadotte et al. 2017). The results shown in Paper 3 confirm that 

urbanization and climate change are likely to promote the invasion of Tetramorium 

immigrans in France. Other global changes increase the risk of invasion, such as the 

expansion of transport networks, technological advancements, landscape transformation, 

or geopolitical events (Early et al. 2016; Seebens et al. 2015), e.g., through the growth of 

internet-based trade in living organisms creating unique and difficult to regulate pathways 

of invasion (Lenda et al. 2014). According to Ricciardi et al. (2017), the changing 

agricultural practices and more specifically the efforts to develop new commercially 

farmed species and the industrial use of mutualistic organisms to increase crop yields 

should promote a new suite of invasive taxa. 

 

5.4.3- Consequences on genetic exchanges between species 

New human-induced hybridization opportunities have occurred in recent years 

and are expected to increase in the near future (Quilodrán et al. 2018), e.g., due to climate 

changes (Taylor et al. 2015; Gómez et al. 2015), the modification of natural habitats 

(Arnold & Martin 2008), the translocation of invasive species (Fitzpatrick et al. 2012), or 

domesticated animals (Leonard et al. 2014; Nussberger et al. 2014).  

Anthropogenic species translocations and habitat modifications have caused a 

dramatic increase in hybridization rates worldwide, contributing to the extinction of 

numerous populations and species (Rhymer & Simberloff 1996; Allendorf et al. 2001). 

Grabenstein & Taylor (2018) even spoke of “human-mediated hybridization” to 

characterize hybridization induced by anthropogenic habitat disturbances. Anthropogenic 

hybridization can directly result from human actions, e.g., when hybridization is induced 

by the release of exotic individuals (e.g., Casas et al. 2016 for the partridges Alectoris 
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spp.). As species are transported around the world with increasing intensity, barriers to 

gene flow between once geographically separated species are reduced and new hybrids 

between introduced and resident species will probably emerge more frequently (Thomas 

2013). When species colonize new environments, founding populations are often small, 

and opportunities for sexual reproduction may be limited by the availability of mates, 

leading colonizing species to exploit the presence of heterospecific congeners (Hall 

2016). In addition, distinct lineages may hybridize in contact zones, increasing genetic 

variation and reducing genetic constraints in newly formed hybrid populations, thereby 

increasing their genetic potential or adaptability (Roy et al. 2015). Across ant taxa, 

Feldhaar et al. (2008) predicted that detailed research should reveal numerous additional 

cases of hybridization, in particular in those ant faunas that are characterized by the recent 

introduction of multiple invasive species. In addition, hybridization may play a significant 

role for introduced species to become invasive (Ellstrand & Schierenbeck 2000; 

Allendorf & Luikart 2007; Hall 2016), for instance by allowing genetically admixed 

individuals to invade novel niches unoccupied by any of their parent species (Roy et al. 

2015). Mesgaran et al. (2016) showed for example that transient hybridization has 

probably driven the rapid replacement of the plant earlier colonizer Cakile edentula by 

the outcrosser C. maritima over a large part of its invasive range in Northwestern 

America, New Zealand, and Australia.   

Global changes also promote hybridization or introgression. Climate-induced 

ranges shifts increase sympatry between previously isolated species, potentially resulting 

in hybridization in these new contact zones (Walther et al. 2002; Garroway et al. 2010; 

Becker et al. 2013; Brennan et al. 2015; Sánchez‐Guillén et al. 2016). For example, 

several studies shown that when hybridization occurs within a contact zone between two 

closely related bird species, interspecific interactions and climate interact in determining 

hybrid zone location and dynamics (Reudink 2007; Taylor et al. 2014; McQuillan & Rice 

2015). Garroway et al. (2010) recorded the first report of hybrid zone formation between 

two species of North American flying squirrels following a range expansion induced by 

contemporary climate change. In plants, the impact of climate changes has also been 

reported to increase opportunities for hybridization among previously isolated lineages, 

facilitating the breakdown of reproductive barriers and the formation of hybrids (Vallejo-

Marin & Hiscock 2016). Urbanization also create new opportunities of encounters 
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(Crispo et al. 2011), especially as urbanized areas have a greater heterogeneity than 

natural environments, creating ecotones acting as new contact areas between species with 

widely differing ecological preferences (Brennan et al. 2015), inducing potential 

hybridization. Results of Papers 1-3 suggest that anthropogenic species translocations 

and habitat modifications as well as climate and urbanization could all have promoted 

hybridization and introgression between Tetramorium immigrans and T. caespitum. 

According to Taylor et al. (2015), hybrid zones should not be viewed as 

equilibrium situations. Long-term, quantitative experimental studies of hybrid zones are 

needed to investigate the consequences and outcomes of hybridization. Patterns of 

variation in hybrid zones could provide exciting opportunities to investigate 

consequences of global changes. Moving hybrid zones may indeed represent sensitive 

indicators for anthropogenic climate change (McQuillan & Rice 2015; Taylor et al. 2015). 

For instance, McQuillan & Rice (2015) reviewed several good examples linking climate 

change to hybrid zone movement (e.g., Britch et al. 2001; Scriber 2011). Such 

monitoring, although time consuming and expensive, would be highly relevant in 

identifying the factors responsible for the hybridization between Tetramorium immigrans 

and T. caespitum, the underlying mechanisms and the future of the hybrid zone. 

 

5.4.4- When hybridization promotes biological invasions  

During the spread phase of a biological invasion, hybridization may play an 

important role in making introduced species invasive (Allendorf & Luikart 2007), 

allowing genetically admixed individuals to invade novel niches that were not typically 

occupied by any of their parent species (Roy et al. 2015). Mesgaran et al.’s (2016) study 

illustrated how colonizing species can exploit the presence of congeners to overcome the 

problems associated with low numbers through hybridization and the subsequent 

reemergence of colonizer genotypes. These authors speculated that such hybridization 

might play a role in facilitating colonization success, perhaps even in the displacement of 

Neanderthals by Homo sapiens. Hall (2016) schematized how hybridization influences 

colonizer establishment by comparing how the relative frequencies of the colonizing and 

resident species change through time, with or without hybridization and introgression 

(Fig. 5). According to the results obtained in Papers 1-4, such a system could correspond 
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to the situation of Tetramorium immigrans and T. caespitum. Indeed, hybridization 

between these two species could promote invasiveness in T. immigrans away from urban 

core areas if hybridization leads to introgression by T. caespitum, for instance by 

integrating genes providing better adaptation to local climate or to semi-natural habitats.  

 

 

Figure 5. Fate of a small number of colonizers (red circles) interacting with a related 
resident species (blue circles). In the absence of hybridization (left), the rare colonizers 
are swamped, e.g., due to genetic incompatibility when mating with the resident or 
because not enough conspecific partners are available, resulting in low fecundity. 
Colonizers decline to vanishingly small frequency as they are replaced by resident 
seedlings. When hybridization and introgression occur (right), colonizer genes persist in 
hybrids (bicolor circles) and colonizer genotypes reassemble through backcrossing 
among colonizer-like individuals (Adapted from Hall 2016: fig. 1). 
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Interspecific hybrids may also become especially successful invaders (Hovick & 

Whitney 2014). Ellstrand & Schierenbeck (2000) proposed that hybridization between 

species may serve as a stimulus for the evolution of invasiveness through four genetic 

mechanisms: (i) hybridization may result in evolutionary novelty by the production of 

novel genotypes and phenotypes that occur in none of the parental taxa, (ii) an increase 

in the amount of genetic variation in hybrid populations may provide greater opportunity 

for natural selection to induce adaptive evolutionary changes, (iii) certain genetic or 

reproductive mechanisms (e.g., clonal reproduction) may stabilize first generation 

hybridization and fix genotypes that demonstrate heterosis, and (iv) hybridization may 

lead to a reduction in mutational genetic load, increasing fitness sufficiently to sustain 

invasiveness. Ellstrand & Schierenbeck (2000) identified 28 situations into 12 plants 

families where invasiveness was preceded by hybridization (see Allendorf & Luikart 

2007; Huxel 1999; Senn & Pemberton 2009; or Facon et al. 2005 for animal examples). 

The possible reasons for hybrid success include increased phenotypic or genotypic 

variability, phenotypic novelty arising from transgressive segregation or adaptive 

introgression, and heterosis effects (Prentis et al. 2008). As a consequence, invasive 

hybridization is now seen as a fundamental problem in conservation biology because of its 

negative impact on worldwide biodiversity (Lowe et al. 2016).  

In the Tetramorium immigrans x caespitum hybridization system, such 

possibilities of future invasions by hybrids should be investigated. As stated above, I 

suggest to first explore hybrids’ ecological niches to provide key elements about the 

possibility of a specialization for agricultural habitats. Additionally, surveying the hybrid 

zone over multiple years and spatial replicates should allow characterizing hybrid zone 

dynamics and detecting a possible invasion by hybrid taxa.  

 

5.4.5- A much more complex final pattern than expected 

Following this discussion and in view of the different elements discussed above, 

it is clear that the situation fleshed out in the introduction is actually much more complex 

than initially supposed. Indeed, urbanization, climate and biological invasions do not act 

separately and individually on Tetramorium species distributions, and Tetramorium 

species distributions are probably not the only cause of gene flow and interspecific 
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hybridization (dotted arrows in Fig. 6; see original assumptions in Chapter 1). In the new, 

more complex picture depicted by my research (Fig. 6), urbanization has been shown to 

directly affect gene flow and hybridization through habitat modification and the creation 

of ecotonal areas. Furthermore, the newly described interspecific hybridization probably 

played a role in the biological invasion of T. immigrans, as much as urbanization 

processes and climate factors. Urbanization and climate have been shown to act 

synergistically on the distribution of Tetramorium species, especially for T. immigrans. 

Such results provide an accurate picture of the complexity to understand drivers of genetic 

exchanges within and between species and point to the need to multiply the studied 

drivers when studying such ecological questions. 

 

 

Figure 6. Review of the main relationships highlighted in the present work between 
global changes, invasions, species distribution and intra- and inter-specific genetic 
exchanges. The dashed arrows correspond to the initial postulates, the solid arrows 
correspond to the contributions of the research carried out in this thesis to the 
understanding of the processes inducing gene flow between populations and interspecific 
hybridization. Colors indicate associated chapters.  
 

So far, few studies have made the effort to integrate the study of different global 

changes (but see Menke et al. 2011; Bellard et al. 2015; Leclerc et al. 2018 and Newbold 

2018), and when investigating issues related to interspecific hybridization, no study has 

proposed a theoretical framework as complete as the one proposed here. However, this 

framework remains rather far from exhaustive, and other factors not yet considered (e.g., 

pollution linked to urbanization) or other global changes such as agriculture 
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intensification are probably partly causal for the observed patterns and processes. Further 

studies should therefore be encouraged, both in this hybridization system and in others, 

to take into account interactions between global changes and to include the exploration 

of numerous factors at multiple scales to better understand processes that generate 

patterns of genetic exchanges.  

 

5.5- CONCLUSION AND PERSPECTIVES 

5.5.1- Concluding remarks: what is new in this study 

Understanding the dynamics and consequences of natural and anthropogenic 

hybridization is a priority for biodiversity conservation (Allendorf et al. 2010). Indeed, 

hybridization may in some cases threaten the conservation of local biodiversity, for 

example by modifying the genetic integrity of native species through introgression 

(Taylor et al. 2015). Interspecific hybridization is becoming more and more common 

around the world, favored by human-induced translocations of organisms and habitat 

modification, and therefore often associated with urbanization. As a consequence, the 

acceleration of urbanization on a global scale makes it urgent to study hybridization in 

order to understand the consequences of the erosion of reproductive barriers between 

distinct evolutionary lineages (Vallejo-Marín & Hiscock 2016).  

However, such studies about interspecific hybridization have rarely encompassed 

concepts like global changes or biological invasions. These concepts themselves are 

rarely studied simultaneously (but see Bellard et al. 2015; Leclerc et al. 2018; Newbold 

2018), and their interactive effects are totally overlooked in the current literature. The 

whole findings of the present research therefore point towards new understanding of the 

relationships between biological invasions, urbanization and hybridization as a whole.  

The present work is pioneering for several reasons. The first, and probably most 

obvious, relates to the fact that the species on which I worked have been recently 

redescribed, and therefore remained unstudied. It may be relevant to note here that the 

present study now provides an effective method to discriminate species in a complex 

admixture situation including both interspecific hybridization and cryptic biodiversity, 
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while dealing with problems such as hierarchical cluster structuring due to uneven 

sampling across species, which constitutes also a significant progress. 

Nevertheless, I would like to emphasize that the theoretical framework including 

the interactions between global changes, invasions and hybridization compartments 

constitutes a true scientific advance. Although still far from a comprehensive framework, 

taking into account interactions between urbanization, climate and invasions and 

including the exploration of multiple scales appears essential to better understand 

processes that generate patterns of genetic exchanges. The study of polyandry, 

recognition mechanisms and discrimination between ant species within a hybrid zone is 

also unprecedented and should provide the opportunity to investigate the selective 

processes involved in the evolution of interspecific mating. My research should therefore 

contribute to a better understanding of interspecific hybridization mechanisms and their 

consequences on genetic and taxonomic diversity. 

 

5.5.2- What is still to be learned from the T. immigrans x caesptium system. An 

overview 

Although a number of research perspectives have been developed or at least 

discussed throughout this chapter, the complexity of the system and the diversity of issues 

I have raised make it necessary to present in a more synthetic way the issues that should 

be addressed in future studies. I have therefore chosen a thematic approach combining 

four objectives formed by the main questions that remain open to discussion: 

(i) Where did Tetramorium immigrans come from? 

(ii) Why is Tetramorium immigrans a good urban exploiter? 

(iii) How do Tetramorium immigrans and T. caespitum break down the barriers against 

hybridization? 

(iv) What do the current data tell us about the future of their hybrid zone? 
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Where did Tetramorium immigrans come from?  

Today, Tetramorium immigrans is known only from opportunistically sampled 

localities all over Europe (Fig. 7). Fine-scale data (e.g., a sampling pressure of 

1/10,000 ha) are therefore needed to characterize the distribution of T. immigrans and is 

crucial to clear out the status of this species in Europe, as well as pinpoint its source area 

within its natural range. Using this extensive sampling, by combining microsatellite data 

and mitochondrial DNA, spatial genetic analysis should lead to identifying the source 

populations and native areas of T. immigrans, as it was done by Ascunce et al. (2011). 

 

 

Figure 7. Location of all Tetramorium immigrans samples recorded so far in Europe (red 
points; including 219 samples of T. immigrans obtained from Wagner et al. 2017 on a 
sampling zone corresponding approximately to 1800 x 4500 km) and of the sampling area 
investigated in the present study (red rectangle; including more than five hundred samples 
on a sampling zone corresponding approximately to 450 x 30 km).  
 

Why is Tetramorium immigrans a good urban exploiter? 

As suggested before, global changes and more particularly urbanization may have 

an impact on competitive interactions, for instance through the modification of 

temperature or primary productivity leading to increase abundance of urban exploiters 

(Shochat et al. 2006). The exploration of characteristics of Tetramorium immigrans 

making it a good urban exploiter is therefore of prime interest as it could enhance the 

understanding of the ecology of this species and bring new clues about mechanisms 

involved in competitive exclusion of T. caespitum in cities. Furthermore, so far the 



Chapter 5. GENERAL DISCUSSION 

 

 
218 

ecological and functional traits of urban exploiters have been intensely studied in birds 

(Ortega-Álvarez & MacGregor-Fors 2009; Angelier et al. 2016; Jokimäki et al. 2017) but 

rarely in arthropods (Lowe et al. 2016; Zhang & Evans 2017). I therefore suggest that 

further studies take into account the role of factors such as stress tolerance (e.g., resistance 

to extreme temperatures and/or to dry conditions) in T. immigrans’ abilities to dominate 

urban areas. Further investigations of species-level traits promoting this species in urban 

habitats should corroborate the hypothesis that this species is an urban exploiter or 

synanthropic species (McKinney 2006; Forman 2014). Response to artificial light or to 

temperature variability, differences in nest habits or in traits linked to nuptial flight 

allowing to overcome constraints on reproductive fitness in cities could bring new lights 

on the drivers of their habitat preferences. Exploration of community composition could 

also contribute some new elements to the discussion as urban exploiters are expected to 

be dominant species in urban habitats. Such investigations are of necessary to understand 

how some arthropods become urban exploiters. 

 

How do Tetramorium immigrans and T. caespitum break down the barriers against 

hybridization? 

Hybridization between Tetramorium immigrans and T. caespitum species only 

occur after a series of filters have been passed (see the first section of this chapter for a 

detailed discussion). Although some of these filters have been partially explored in my 

research or in other studies, others have never been investigated or remain unstudied. 

First, global changes could favor overlapping phenology at the time of mating flight, 

promoting opportunities to mate with heterospecifics. Wagner et al. (2017) showed that 

winged reproductives of these species were found in nests at overlapping periods, but 

considering only 7 nests of T. caespitum and 12 of T. immigrans whose localities are not 

known. Overlapping phenology inside the hybrid zone should be investigated as it could 

be promoted by the ecological context provided by the interaction between climate and 

urbanization. For instance, because hybrid zones are located in the southernmost part of 

the distribution of T. caespitum, the warm climate could accelerate the pupal stage of T. 

caespitum reproductives compared to the north and promote a nuptial flight simultaneous 

with T. immigrans.  
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The next filter corresponds to the dichotomy between behavioral isolation vs. 

sexual attraction. Regarding this filter, it could be relevant to investigate the recognition 

cues in reproductive at mating. Indeed, in all species where workers are highly aggressive 

towards conspecific, mating is still possible between reproductive individuals coming 

from other nests. Species recognition patterns between heterospecific reproductives may 

therefore not be the same than between heterospecific workers, e.g., if fertility signal 

homogenizes their profiles and reduce their ability to use species-specific differences, 

undermining identification of the potential mates' species before copulation. It could thus 

be relevant to further investigate the recognition cues in reproductives, both based on 

CHC extraction or behavioral assays. Although relatively easy to practice when winged 

reproductive are sampled in nests before nuptial flights, such analyses could be difficult 

to carry out during the nuptial flight. The detection and location of these flights is difficult 

and identification of individual species is based on genetic methods that are difficult to 

combine with chemical or behavioral assays. 

Finally, most of the postzygotic mechanisms promoting hybridization between 

these species remain unknown. The exploration of postzygotic barriers through the 

comparisons between copulation frequencies (which in our case are very difficult to 

observe, as mating occurs during nuptial flights; see above) or insemination frequencies 

obtained after genotyping the sperm content of queens’ spermatheca, and the offspring 

observed at different stages (egg, larvae, pupae and adult) could bring new light on the 

natural and sexual selection processes involved and could allow a better understanding of 

the viability and fertility of both hybrids and their offspring. Analyzing reproductive 

offspring (i.e. males and gynes) instead of the worker offspring which are less affected 

by individual selective pressures would ensure further insight into the consequences of 

sexual selection and sexual conflict in insect societies.  
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What do the current data tell us about the future of the hybrid zone? 

Hybrid zones structure can be broadly categorized as either clinal or mosaic 

(Taylor et al. 2015). The clinal pattern of the Tetramorium immigrans x caespitum hybrid 

zone could be maintained by endogenous selection against hybrid genotypes (tension 

zones; Barton & Hewitt 1985; see Chapter 1 for details), by selection favoring different 

parental types at each end of an environmental gradient (Endler 1977), or by selection in 

intermediate habitats favoring individuals of mixed ancestry (bounded hybrid superiority 

model; Moore 1977) (Taylor et al. 2015). It is difficult to provide elements regarding the 

functioning of the hybrid zone based on the data from the present study. Potential changes 

in the species interaction networks in response to invasion and hybridization could be 

especially complex, leading to different potential outcomes of invasion and hybridization: 

invasion outcomes range from invasion failure to establishment of the new species, co-

existence, hybridization, or species replacement. Hybrids could therefore persist alone or 

in co-existence with one or both parental species (Brennan et al. 2015). 

Although surveying the hybrid zone over multiple years and spatial replicates is the 

best way to accurately investigate hybrid zone dynamics, some current characteristics of 

the hybrid zone between T. immigrans and T. caespitum could provide insight into the 

mechanisms that generate the persistence of the hybrid zone in time and space. For instance, 

predictions from the tension zone model suggest that the center of the hybrid zone should 

correspond to an area of low population density where limited mating occasions promote 

heterospecific copulating, inducing a hybrid zone. When hybridizing species are distributed 

along an environmental gradient, hybridization can narrow the region in which both species 

co-occur, due to ecological and/or reproductive character displacement across the 

hybridization zone (Goldberg & Lande 2006, 2007), therefore inducing the same pattern of 

low population density of parental species in the hybrid zone. This prediction could be 

confirmed in the T. immigrans x caespitum system by investigating the densities of pure 

species in the hybrid zone compared to their densities in areas where they do not co-occur 

(Fig. 8a). Considering agricultural landscapes in the urban gradient and evaluating the 

characteristics of ecological niches of hybrids should also provide key elements about the 

outcome of the hybrid zone and the possibility of a specialization for agricultural habitats. 

In this case, ecological niches of hybrids should be different from the niches of parental 

species, either because pure species have a lower fitness in the hybrids’ habitat or because 
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hybrids’ fitness is higher in these habitats. Such data should provide key elements about the 

possibility of a specialization for agricultural habitats (bounded hybrid superiority model; 

Fig. 8b) and detect a possible invasion by hybrid taxa. 

 

Figure 8. Potential mechanisms generating clinal hybrid zone between Tetramorium 
immigrans and T. caespitum. Domes correspond to T. immigrans (red) and T. caespitum 
(blue) colonies; mixed red-blue domes correspond to hybrid colonies. a) Pattern resulting 
from endogenous selection against hybrid genotypes (tension zone model) or selection 
favoring different parental types at either end of an environmental gradient. b) Pattern 
resulting from selection in intermediate habitats favoring individuals of mixed ancestry 
(bounded hybrid superiority model).  
 

Questions about hybrid males remain, as no hybrid father has contributed to any 

sampled offspring in the present researches. So, are hybrid males an evolutive dead-end? 

To evaluate the inviability of hybrid males (Fig. 9.1), a first step could be to follow the 

development of male larvae and pupae in nests with hybrid queen in order to and evaluate 

their mortality and emergence rates compared to females. In cases where hybrid males 

are viable, their sterility (Fig. 9.2) could be evaluated by collecting sperm and artificially 

inseminating gynes (as done by Ball et al. 1983 with the smaller species Solenospsis 

invicta) and then evaluate the viability of offspring (Fig. 9.3). 
 

 
Figure 9. Schematic view of the potential mechanisms that generate the lack of hybrid 
males contribution to hybrid offspring obtained in the present researches, including the 
lethality of the hybrid males (1), their sterility (2), and the lethality of offspring (3). 
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5.5.3- Transposability and generalization to other spatial and biological systems 

The results and perspectives of my thesis are not limited to the T. immigrans x 

caespitum biological system. First, although the hybrid zone presented in this study is 

particularly well suited to the issues addressed, it would be relevant to replicate such study 

in other areas of hybridization between T. immigrans and T. caespitum (provided such 

hybrid zones exist). Above all, these issues may however be exported to other 

hybridization systems and invasive species to evaluate the robustness of the theoretical 

framework and to test the strength of the interactions between global changes, 

hybridization and invasion across taxa. Such synergistic effects can affect many taxa, for 

instance insects (e.g., hybrid speciation in Papilio was catalyzed by climate warming‐

induced interspecific introgression; Scriber 2011), plants (e.g., hybridization between 

Pericallis cruenta and P. echinata, and between P. cruenta and P. tussilaginis is likely 

promoted by secondary contact due to human disturbance and road construction; van 

Hengstum et al. 2012), birds (e.g., climate-mediated shifts in the distribution of the 

Carolina chickadee Poecile carolinensis may indirectly lead to range retraction in the 

Black-capped chickadee P. atricapillus and affect the hybrid zone location; McQuillan & 

Rice 2015), and mammals (e.g., hybridization between sympatric Glaucomys sabrinus 

and G. Volans following a range expansion induced by the ongoing climate change; 

Garroway et al. 2010). Thus, the scope of my results should be viewed as a case-study 

that will have to be confirmed and replicated in various taxa. I would therefore conclude 

this Ph.D. thesis by illustrating how the integration of global changes, biological 

invasions and hybridization could be worth investigating in some other systems, and why 

my work could lay the foundations for a more comprehensive framework.  

A number of recent studies clearly suggest that these issues are highly topical. The 

Asian tiger mosquito Aedes albopictus is currently the most invasive mosquito in the 

world. Sherpa et al. (2018) showed that long-distance human-assisted transport is 

probably its main dispersal mechanism in Europe. Their results also suggest that 

populations from invaded areas in the tropics likely failed to successfully establish in 

Europe, maybe due to differential adaptation to climate constraints. Such human-

mediated transport increases the probability of introducing the species in urban areas 

where temperature is warmer than outside the cities. In such a system, urbanization may 
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therefore help invasion of Ae. albopictus across Europe in the future, and especially 

promote gene flow between tropical invaded areas and European populations. Li et al. 

(2014) showed that in Guangzhou (China), urbanization had a significant impact on the 

ecology of Ae. Albopictus, with more larval habitats, shorter larval development time, 

higher adult emergence rate, and longer lifespan in urban habitats, and therefore 

suggested that urbanization could increase the potential for this important vector of 

dengue and zika viruses to colonize other parts of the world. The major role of 

urbanization combined with the invasive potential of this species make it a good candidate 

to test the strength of the interactive framework between climate, urbanization and 

invasion.  

The processionary moths Thaumetopoea pityocampa‐wilkinsoni complex seems a 

perfect model to investigate the interaction between global changes and invasion, as well 

as their impacts on interspecific hybridization. Petrucco‐Toffolo et al. (2018) recently 

showed that although only a low frequency of hybrids has been observed in the putative 

contact zone between Th. pityocampa and Th. wilkinsoni, no reproductive barriers against 

hybridization and even introgression could be found. The range expansion of Th. 

pityocampa due to both climate changes (Battisti et al. 2005) and human introductions 

(Robinet et al. 2012; Avtzis et al. 2016) could promote new contact zones between the 

two species, inducing more opportunities of heterospecific mating. As suggested by 

Petrucco‐Toffolo et al. (2018), such hybridization could facilitate the colonization 

success of expanding or invasive species through adaptive introgression or promote the 

emergence of new and more aggressive pest species. Again, I see this biological model 

as a great opportunity to enhance our understanding of complex relations between global 

changes, invasion and hybridization, with the opportunity of being proactive in 

establishing hybridization patterns and improving the development of conservation plans 

if hybridization become a concern. 

My examples have hitherto focused on insects; however, these emerging issues 

can obviously concern other taxa. For instance, Heath et al. (2010) showed that 

hybridization levels between the coastal cutthroat trout Oncorhynchus clarki clarki and 

rainbow trout Oncorhynchus mykiss depend on anthropogenic disturbance such as 

logging activity or urban infrastructure development. Few years later, Muhlfeld et al. 

(2014) showed that climatic drivers and human-mediated introductions of the rainbow 
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trout interact to increase invasive hybridization between O. mykiss and the threatened 

native O. clarkii lewisi. However, as far as I know, no study has investigated the combined 

effects of climate and urbanization in this system. One could ask, e.g., if the creation of 

infrastructure combined with climate warming increased the risk of invasion by the 

rainbow trout, or if these anthropogenic modifications affected the establishment of 

hybridization patterns with the closely related species. 

Non-native lineages of the common wall lizard Podarcis muralis are frequently 

introduced in cities where they hybridize with native populations. Beninde et al. (2018) 

showed that the cityscape structure and invasion history of cities determine future 

evolutionary pathways in these novel hybrid zones where elevated genetic diversity could 

relate to adaptive traits, giving hybrid swarms a high potential to adapt to ecological 

conditions, both to the specific conditions of urban habitats or to new conditions different 

from those experienced by parental species. They therefore concluded that cities are likely 

to become major playgrounds for hybridization where human-mediated introductions 

have repeatedly led to the emergence of novel hybrid zones and these novel admixture 

processes will determine future evolutionary pathways of urban lizards. In such context, 

although never investigated, climate changes could interact with urbanization to generate 

hybridization patterns, e.g., in promoting the establishment of Podarcis muralis in 

northern cities, accelerating its invasion. 

A number of other examples found in the recent literature also reveal how it might 

be worth expanding this framework to include other global changes. For instance, Paffetti 

et al. (2018) show that the global deforestation leading to the removal of a large number 

of tree rows and shrubs along rivers and in agricultural landscapes, eradicates natural 

barriers crucial to mitigate hybridization between Populus species, because such 

hybridization is facilitated by wind intensity favoring the spread of pollen. Champagnon 

et al. (2013) found significant rates of hybridization between wild and captive-bred 

mallards and suggested that long-term releases of captive-bred mallards, if carried on a 

large scale, could irreversibly compromise the genetic structure and composition of 

European mallards. Such examples highlight the value of taking into account the indirect 

effects of global changes and illustrate the need to simultaneously investigate a large 

number of factors. However, considering too many effects simultaneously presents 

serious risks because this generates difficulties in interpreting highly complex models. It 
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would therefore be relevant to first identify the major global changes that control invasion 

and hybridization, and then focus on these changes to characterize the underlying 

mechanisms. 

To conclude, although I have selected the preceding examples to illustrate my 

point, I am aware that many other systems are likely to be concerned by similar issues 

and should be investigated in the light of the results presented and discussed here. 

Numerous studies have already highlighted the need to investigate global changes, 

biological invasion or interspecific hybridization at different scales, or have shown that 

the isolated analysis of each process or factor may not be sufficient to accurately 

understand the system. The global climate changes combined with the increase in the size 

of cities (such as the megalopolis of Beijing which has doubled in size since 2000), the 

increase of air, sea and road traffic, of trade between countries (e.g., food, raw material) 

of tourism, or the changing human habits (e.g., the fashion for new pets) emphasize how 

important and urgent it is to address these issues.  
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